CMPUT 655: RL-1 Lecture 3

14th September 2020

Contents

We will talk about

- Small recap about what we did last time about probability
- And discuss these a little bit in the context of MDPs

Reminder about Some Probability Rules

- Conditional probability (also chain rule)

$$
P(A \mid B)=\underbrace{P(A, B)}_{\text {deA }} \begin{aligned}
&P(X)=\mathbb{Q} Y=y)=\frac{P(X=x, Y=y)}{P(Y=y)} \\
& P(A, B, C)=P(A, B \mid C) P(C) \\
&P(X=1 \mid Y)=\{H\})
\end{aligned}
$$

- Marginilization over a joint probability distribution

$$
P(X=x)=\sum_{y \in \mathcal{Y}} P\left(X^{K}=x, Y=y\right) \text {. }
$$

Reminder about Some Probability Rules (contd.)

- Conditional Expectation

- Cond Law of Total Expectation

$$
\mathbb{E}_{X}[X \mid Y=y]=\mathbb{E}_{Y}\left[\mathbb{E}_{X}[X \mid Y=y]\right]
$$

RL Book Notation

- Mathcal (fancy) Symbols:

$$
s_{6}, s_{1}, s_{2}
$$ speeding,

- Capital Symbols: dnappiing, ...\}
$S_{0} \longrightarrow$ r.v. stares the stats
at $(t=0)$
- Small Symbols:

$$
\begin{aligned}
& V_{s_{0}}=\text { behind a cor } \\
& A_{0}=\text { steer left sa, }^{\text {sta }}
\end{aligned}
$$

Example MDP

Figure: $\operatorname{MDP} M=(\mathcal{S}, \mathcal{A}, \mathcal{R}, P, \gamma)$.

$$
\left\{s_{1}, s_{2}\right\}
$$

Agent's Interaction and the Trajectory (\sim stream of experience)
(s.) $a, 1, s_{1}, a_{1}, 1$,
(So) ${ }^{11} A_{0}^{\prime \prime} R_{1}^{\prime \prime} S_{1}^{\prime \prime}, A_{1}^{\prime \prime}$

Figure: Trajectory $\tau_{t}=\left(S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, R_{2}, S_{2}, \ldots, S_{T}\right)$.
Let us calculate the probability of seeing this trajectory:

$$
\begin{aligned}
P\left(S_{0}, A_{0}, R_{1}, S_{1}, A_{1}, \ldots\right) & =P\left(S_{0}\right) \times P\left(A_{0} R, S_{1}, \ldots / S_{0}\right) \\
& =P\left(S_{0}\right) \pi(\underbrace{A_{0} / S_{0}}) P\left(S_{1} R_{1} / A_{0} S_{0}\right) \ldots
\end{aligned}
$$

Different Transition Probabilities (Section 3.1 RL Book ${ }^{1}$)

$$
\begin{aligned}
\left(s^{\prime}, r \mid s, a\right) & \doteq \operatorname{Pr}\left(S_{t+1}=s^{\prime}, R_{t+1}=r \mid S_{t}=s, A_{t}=a\right) \\
& =\sum_{r \in R_{0}} P\left(s^{\prime}, r \mid s, a\right)
\end{aligned}
$$

$$
P\left(s_{2} \mid s_{2}, a_{1}\right)=0.1
$$

Figure: MDP

- (Dependent on the policy π)

$$
\begin{aligned}
& \underbrace{p\left(s^{\prime} \mid s\right) \geqslant}_{x} V^{\pi} \\
& P\left(s^{\prime}, r \mid s, a\right) \xrightarrow{r} P\left(s^{\prime} \mid s, a\right) \\
& \begin{array}{l}
p\left(s^{\prime}, r \mid s, a\right) \pi(a \mid s) Q^{\pi} P\left(s^{\prime}, a \mid s\right)=P\left(s^{\prime} \mid s, a\right) \times \pi(a \mid s) \\
P\left(s^{\prime} \mid s\right)=\sum_{a} P\left(s^{\prime}, a \mid s\right)=\sum_{a} P\left(s^{\prime} \mid s, a\right) \pi(a \mid s) \\
\left(s^{\prime}, a^{\prime} \mid s, a\right)=\pi\left(a^{\prime} \mid s^{\prime}\right) P\left(s^{\prime} \mid s, a\right)
\end{array} \\
& \begin{array}{l}
p\left(s^{\prime}, r \mid s, a\right) \pi(a \mid s)-Q^{\pi} \quad P\left(s^{\prime}, a \mid s\right)=P\left(s^{\prime} \mid s, a\right) \times \pi(a \mid s) \\
P\left(s^{\prime} \mid s\right)=\sum_{a} P\left(s^{\prime}, a \mid s\right)=\sum_{a} P\left(s^{\prime} \mid s, a\right) \pi(a \mid s) \\
\pi\left(s^{\prime}, a^{\prime} \mid s, a\right)=\pi\left(a^{\prime} \mid s^{\prime}\right) P\left(s^{\prime} \mid s, a\right)
\end{array}
\end{aligned}
$$

Different Reward Functions (Section 3.1 RL Book²)

- The random variable R_{t}
- Reward function

Mad
$p(r \mid s, a)$
(5) It \rightarrow Mani

$\sum_{s^{\prime}} p\left(s^{\prime}, r \mid s, a\right)$
$r(s, a) \doteq \mathbb{E}\left[R_{t} \mid S_{t-1}=s, A_{t-1}=a\right] \leftarrow$ cons. Expect urn
 $=\sum_{r} r \cdot P\left(R_{t}=r \mid S_{t-1}=s, A_{t-1}=a\right)$ Figure: MDP

$$
=\sum_{r} r \sum_{s} p\left(s^{\prime}, r \mid s, a\right)
$$

- $r\left(s, a, s^{\prime}\right) \stackrel{=}{=} \mathbb{E}\left[R_{t} \mid S_{t}=s^{\prime}, S_{t-1}=s, A_{t-1}=a\right]$

Bellman Equation $\left(V^{\pi} \rightarrow \stackrel{\rightharpoonup}{V}\right)$

Red tron bark

Bellman Equation $(V \rightarrow V)$ (using $r(s, a))$

What does \mathbb{E}_{π} mean?

$$
\begin{aligned}
& V_{\pi}(s)=\mathbb{F}_{\pi}\left[R_{1}+\gamma R_{2}+\gamma^{2} R_{3}+\cdots \mid S_{0}=s\right] \\
& =\sum_{a_{1}} \pi\left(a_{1} \mid s\right) \sum_{s_{1}, r_{1}} p\left(s_{1} r_{1} \mid s, a_{1}\right)\left[r_{1}+\gamma \sum_{a_{1}} \pi\left(a_{1} \mid s_{1}\right) \sum_{s_{2} r_{2}} p\left(s_{2} r_{2} \mid s_{r_{1}}\right.\right. \\
& {\left[a_{0}\right. \text { is is an instantiation }} \\
& r_{2}+\gamma . \cdots: \\
& S_{2} R_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{lllll}
x & y & z & \text { at } t=o\left(A_{0}\right) \\
a_{0} & a_{1} & a_{2} & a_{i} \in A\left(s_{i}\right) \text { all the actions } \\
\text { at } t=i
\end{array} \\
& \mathbb{E}_{\pi} \cong \mathbb{E}_{A_{0} u n(\cdot \mid s)}, s, R, u P\left(\cdot, \cdot \mid s, A_{0}\right) ; A_{1} \backsim \pi\left(\cdot \mid s_{1}\right) \\
& \text { (5) } \operatorname{A}_{R_{1}}^{A_{1}} S^{A_{1} n \pi} \ldots \mathbb{E}_{x}[X]=\sum_{x \in X} x \cdot p(X=\pi)
\end{aligned}
$$

Bellman Equation $(V \rightarrow V)$ (more thoughts)

Summary

