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Comments: Sept. 16

• Discussion on Slack very nice


• Are there any other topics you would like to review?


• First 40-50 minutes: some review of discussions and exercise questions


• Next 30-40 minutes: discuss projects, and break into groups



Discussion Topics Summary



Discussion Topics Summary



Additional questions
• Are there other ways to discount (state-based, time-based, different from the exponential 

decrease approach)?


• Why use epsilon-greedy, since UCB is better? How do we use UCB in large state/action spaces? 
What about using gradient bandits? What other exploration strategies are there?


• Is UCB a Bayesian approach?


• Apart from being a simple problem formulation, what are the advantages of the K-armed bandit 
problem over complete RL? what are its use-cases in industry? 


• related: For machine learning projects (usually commercial ones) the online learning phase is 
finished before sending the item to be used, is it also the case for RL?


• In the bandit experiments, there seems to be an emphasis on means, but when drawing 
conclusions wouldn't knowing deviation provide additional insight? 


• A single number for reward seems restrictive for multiple goals/sub goals. Is weighted sum 
approach appropriate or are there more sophisticated methods?



Additional theory questions

• How to prove that policy iteration is guaranteed to find the optimal policy in 
time polynomial in num_states and num_actions?


• For finite MDPs, the Bellman optimality eqn has a unique solution 
independent of policy. What is an example infinite MDP with many sol’ns


• How to prove convergence of iterative policy evaluation


• (I can show one or some of these in-class next time)



C1M1 Exercise Question 1Worksheet 3
CMPUT 397

September 20, 2019

1. (Exercise 2.2 from S&B 2nd edition) Consider a k-armed bandit problem with k = 4
actions, denoted 1, 2, 3, and 4. Consider applying to this problem a bandit algorithm
using ✏-greedy action selection, sample-average action-value estimates, and initial esti-
mates of Q1(a) = 0, for all a. Suppose the initial sequence of actions and rewards is
A1 = 1, R1 = 1, A2 = 2, R2 = 1, A3 = 2, R3 = 2, A4 = 2, R4 = 2, A5 = 3, R5 = 0. On
some of these time steps the ✏ case may have occurred, causing an action to be selected
at random. On which time steps did this definitely occur? On which time steps could
this possibly have occurred?

2. Suppose � = 0.9 and the reward sequence is R1 = 2, R2 = �2, R3 = 0 followed by an
infinite sequence of 7s. What are G1 and G0?

3. Assume you have a bandit problem with 4 actions, where the agent can see rewards
from the set R = {�3.0,�0.1, 0, 4.2}. Assume you have the probabilities for rewards
for each action: p(r|a) for a 2 {1, 2, 3, 4} and r 2 {�3.0,�0.1, 0, 4.2}. How can you
write this problem as an MDP? Remember that an MDP consists of (S,A,R, P, �).

More abstractly, recall that a Bandit problem consists of a given action space A =
{1, ..., k} (the k arms) and the distribution over rewards p(r|a) for each action a 2 A.
Specify an MDP that corresponds to this Bandit problem.
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C1M1 Exercise Question 2

Worksheet 2
CMPUT 397

September 13, 2019

3. In a 3-armed bandit problem, you know that the reward for each action is randomly
distributed according to a Gaussian distribution with unknown mean, and a variance
of 1: Ra ⇠ N (µa, 1). How could you use the extra information about the variance to
improve upon UCB action selection?

4. (Exercise 2.6 from S&B 2nd edition) The results shown in Figure 2.3 should be quite
reliable because they are averages over 2000 individual, randomly chosen 10-armed
bandit tasks. Why, then, are there oscillations and spikes in the early part of the curve
for the optimistic method? In other words, what might make this method perform
particularly better or worse, on average, on particular early steps?
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C1M2 Exercise Question 1

Worksheet 3
CMPUT 397

September 20, 2019

1. (Exercise 2.2 from S&B 2nd edition) Consider a k-armed bandit problem with k = 4
actions, denoted 1, 2, 3, and 4. Consider applying to this problem a bandit algorithm
using ✏-greedy action selection, sample-average action-value estimates, and initial esti-
mates of Q1(a) = 0, for all a. Suppose the initial sequence of actions and rewards is
A1 = 1, R1 = 1, A2 = 2, R2 = 1, A3 = 2, R3 = 2, A4 = 2, R4 = 2, A5 = 3, R5 = 0. On
some of these time steps the ✏ case may have occurred, causing an action to be selected
at random. On which time steps did this definitely occur? On which time steps could
this possibly have occurred?

2. Suppose � = 0.9 and the reward sequence is R1 = 2, R2 = �2, R3 = 0 followed by an
infinite sequence of 7s. What are G1 and G0?

3. Assume you have a bandit problem with 4 actions, where the agent can see rewards
from the set R = {�3.0,�0.1, 0, 4.2}. Assume you have the probabilities for rewards
for each action: p(r|a) for a 2 {1, 2, 3, 4} and r 2 {�3.0,�0.1, 0, 4.2}. How can you
write this problem as an MDP? Remember that an MDP consists of (S,A,R, P, �).

More abstractly, recall that a Bandit problem consists of a given action space A =
{1, ..., k} (the k arms) and the distribution over rewards p(r|a) for each action a 2 A.
Specify an MDP that corresponds to this Bandit problem.
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Worksheet 3
CMPUT 397

September 20, 2019

4. Prove that the discounted sum of rewards is always finite, if the rewards are bounded:
|Rt+1|  Rmax for all t for some finite Rmax > 0.

�����

1X

i=0

�iRt+1+i

����� < 1 for � 2 [0, 1)

Hint: Recall that |a+ b| < |a|+ |b|.

5. Consider the continuing MDP shown on the bottom. The only decision to be made is
that in the top state, where two actions are available, left and right. The numbers show
the rewards that are received deterministically after each action. There are exactly two
deterministic policies, ⇡left and ⇡right. What policy is optimal if � = 0? If � = 0.9? If
� = 0.5?
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C1M4 Exercise Question 1Worksheet 5
CMPUT 397

October 4, 2019

1. In iterative policy evaluation, we seek to find the value function for a policy ⇡ by applying
the Bellman equation many times to generate a sequence of value functions vk that will
eventually converge to the true value function v⇡. How can we modify the update below to
generate a sequence of action value functions qk?

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a) [r + �vk(s
0)]

2. A deterministic policy ⇡(s) outputs an action a 2 A directly. A stochastic policy ⇡(·|s)
outputs the probabilities for all actions. How can you represent a deterministic policy as a
stochastic policy?
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1. In iterative policy evaluation, we seek to find the value function for a policy ⇡ by applying
the Bellman equation many times to generate a sequence of value functions vk that will
eventually converge to the true value function v⇡. How can we modify the update below to
generate a sequence of action value functions qk?

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a) [r + �vk(s
0)]

2. A deterministic policy ⇡(s) outputs an action a 2 A = {a1, a2, . . . , ak} directly. More gener-
ally, a policy ⇡(·|s) outputs the probabilities for all actions: ⇡(·|s) = [⇡(a1|s), ⇡(a2|s), . . . , ⇡(ak|s).
How can you write a deterministic policy in this form? Let ⇡(s) = ai and define ⇡(·|s).

3. (Exercise 4.1 S&B) Consider the 4x4 gridworld below, where actions that would take the
agent o↵ the grid leave the state unchanged. The task is episodic with � = 1 and the
terminal states are the shaded blocks. Using the precomputed values for the equiprobable
policy below, what is q⇡(11, down)? What is q⇡(7, down)?

4. (Exercise 4.1 from S&B) Suppose in the above gridworld where a new state 15 is added
to the gridworld just below state 13, and its actions, left, up, right, and dowm, take the
agent to the states 12, 13, 14, and 15, respectively. Assume that the transitions from the
original states are unchanged. What, then is, v⇡(15) for the equiprobable random policy?
Now suppose the dynamics of state 13 are also changed, such that action down from state
13 takes the agent to the new state 15. What is v⇡(15) for the equiprobable random policy
in this case?
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C1M4 Exercise Question 1
The policy iteration algorithm on 
page 80 has a subtle bug in that 
it may never terminate if the 
policy continually switches 
between two or more policies 
that are equally good. This is ok 
for pedagogy, but not for actual 
use. Modify the pseudocode so 
that convergence is guaranteed. 
Note that there is more than one 
approach to solve this problem. 

Worksheet 5
CMPUT 397

October 2, 2019

5. (Exercise 4.4 S&B) The policy iteration algorithm on page 80 has a subtle bug in that it
may never terminate if the policy continually switches between two or more policies that
are equally good. This is ok for pedagogy, but not for actual use. Modify the pseudocode
so that convergence is guaranteed. Note that there is more than one approach to solve this
problem.

80 Chapter 4: Dynamic Programming

s 2 S, illustrating policy improvement. Although in this case the new policy �� happens
to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, �, has been improved using v� to yield a better policy, ��, we can then
compute v�� and improve it again to yield an even better ���. We can thus obtain a
sequence of monotonically improving policies and value functions:

�0
E�� v�0

I�� �1
E�� v�1

I�� �2
E�� · · · I�� ��

E�� v�,

where
E�� denotes a policy evaluation and

I�� denotes a policy improvement . Each
policy is guaranteed to be a strict improvement over the previous one (unless it is already
optimal). Because a finite MDP has only a finite number of policies, this process must
converge to an optimal policy and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is
given in the box below. Note that each policy evaluation, itself an iterative computation,
is started with the value function for the previous policy. This typically results in a great
increase in the speed of convergence of policy evaluation (presumably because the value
function changes little from one policy to the next).

Policy Iteration (using iterative policy evaluation) for estimating � � ��

1. Initialization
V (s) 2 R and �(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Loop:

� � 0
Loop for each s 2 S:

v � V (s)
V (s) �

�
s�,r p(s�, r |s, �(s))

�
r + �V (s�)

�

� � max(�, |v � V (s)|)
until � < � (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable � true
For each s 2 S:

old-action � �(s)
�(s) � argmaxa

�
s�,r p(s�, r |s, a)

�
r + �V (s�)

�

If old-action �= �(s), then policy-stable � false
If policy-stable, then stop and return V � v� and � � ��; else go to 2
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C1M4 Exercise Question 3Worksheet 5
CMPUT 397

October 4, 2019

5. (Challenge Question) A gambler has the opportunity to make bets on the outcomes of
a sequence of coin flips. If the coin comes up heads, she wins as many dollars as she has
staked on that flip; if it is tails, she loses her stake. The game ends when the gambler
wins by reaching her goal of $100, or loses by running out of money. On each flip, the
gambler must decide what portion of her capital to stake, in integer numbers of dollars.
This problem can be formulated as an undiscounted, episodic, finite MDP. The state is the
gambler’s capital, s 2 {1, 2, ..., 99} and the actions are stakes, a 2 {0, 1, ...,min(s, 100�s)}.
The reward is +1 when reaching the goal of $100 and zero on all other transitions. The
probability of seeing heads is ph = 0.4.

(a) What does the value of a state mean in this problem? For example, in a gridworld where
the value of 1 per step, the value represents the expected number of steps to goal. What
does the value of state mean in the gambler’s problem? Think about the minimum and
maximum possible values, and think about the values of state 50 (which is 0.4) and state
99 (which is near 0.95).

(b) Modify the pseudocode for value iteration to more e�ciently solve this specific problem,
by exploiting your knowledge of the dynamics. Hint: Not all states transition to every

other state. For example, can you transition from state 1 to state 99?

4.4. Value Iteration 83

case is when policy evaluation is stopped after just one sweep (one update of each state).
This algorithm is called value iteration. It can be written as a particularly simple update
operation that combines the policy improvement and truncated policy evaluation steps:

vk+1(s)
.
= max

a
E[Rt+1 + �vk(St+1) | St =s, At =a]

= max
a

X

s�,r

p(s�, r |s, a)
�
r + �vk(s�)

�
, (4.10)

for all s 2 S. For arbitrary v0, the sequence {vk} can be shown to converge to v� under
the same conditions that guarantee the existence of v�.

Another way of understanding value iteration is by reference to the Bellman optimality
equation (4.1). Note that value iteration is obtained simply by turning the Bellman
optimality equation into an update rule. Also note how the value iteration update is
identical to the policy evaluation update (4.5) except that it requires the maximum to be
taken over all actions. Another way of seeing this close relationship is to compare the
backup diagrams for these algorithms on page 59 (policy evaluation) and on the left of
Figure 3.4 (value iteration). These two are the natural backup operations for computing
v� and v�.

Finally, let us consider how value iteration terminates. Like policy evaluation, value
iteration formally requires an infinite number of iterations to converge exactly to v�. In
practice, we stop once the value function changes by only a small amount in a sweep.
The box below shows a complete algorithm with this kind of termination condition.

Value Iteration, for estimating � � ��

Algorithm parameter: a small threshold � > 0 determining accuracy of estimation
Initialize V (s), for all s 2 S+, arbitrarily except that V (terminal) = 0

Loop:
| � � 0
| Loop for each s 2 S:
| v � V (s)
| V (s) � maxa

�
s�,r p(s�, r |s, a)

�
r + �V (s�)

�

| � � max(�, |v � V (s)|)
until � < �

Output a deterministic policy, � � ��, such that
�(s) = argmaxa

�
s�,r p(s�, r |s, a)

�
r + �V (s�)

�

Value iteration e�ectively combines, in each of its sweeps, one sweep of policy evaluation
and one sweep of policy improvement. Faster convergence is often achieved by interposing
multiple policy evaluation sweeps between each policy improvement sweep. In general,
the entire class of truncated policy iteration algorithms can be thought of as sequences
of sweeps, some of which use policy evaluation updates and some of which use value
iteration updates. Because the max operation in (4.10) is the only di�erence between
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Identifying Projects

• If you already have a group and project idea, post it to Slack!


• If you are comfortable with the project, you can go ahead and submit a 
proposal on eClass


• We will go through these and give comments when needed about scope


• If you still want more validation, then send a draft on slack, to Andy, Shivam 
and I as a Direct Message (including your teammates). We can give minor 
comments about it there


• Today in class we will spend some time discussing projects, so you can find 
teammates



Advice on Identifying a Project

• Execution matters as much as (or more than) ideas 


• There is a tendency to over-value coming up with a cute algorithm/idea


• Research is about understanding, not just about solving problems


• It is likely too early to come up with ideas on your own; it is perfectly fine to 
take a question specified by someone else


• Your job as a (new) grad student is to execute thoroughly and precisely


• Specify a clear question and identify steps towards answering it



Some project types

• Empirical Study — requires a thorough evaluation


• Algorithmic Project — a new idea, where sometimes it is enough to do a 
demonstration rather than a thorough study


• Theory Project — provide an answer to an open theoretical question


• Applied Project — this one is not listed in the google doc, because an Applied 
project might take too much time in this course, unless you are bringing a 
partially completed 



Empirical Study

• An empirical study is not easy! 


• Ignore most of the papers in RL; they are not really doing empirical work, 
typically they are really just showing that their algorithm runs


• It requires 1) designing an experiment to highlight what you would like to see 
and 2) using a sound, and typically exhaustive methodology 


• You need sufficient runs, fair choices for algorithms, etc.


• e.g., https://arxiv.org/abs/1602.08771

https://arxiv.org/abs/1602.08771
https://arxiv.org/abs/1602.08771


Algorithmic Project

• You need to clearly motivate what problem you are solving and why your 
proposed idea solves this problem


• You need results substantiating these claims


• Theory, without experiments, is enough


• Else, your experiments should provide evidence for your claims


• Ask yourself: do I have evidence supporting my claims about this algorithm? 
Did I design my experiment to highlight what I want to show about this 
algorithm?



Some topic areas

• Policy evaluation and prediction, especially in the off-policy setting (data 
gathered under one policy, want to evaluate another)


• Improving (stable) online control, with policy gradient methods and/or action-
value methods


• Optimization strategies for RL, and (hyper)parameter selection


• Exploration


• Using learned models in RL


• Batch RL, including learning from a batch for pre-training



An example of a concrete project

• Title: Understanding the role of partial greedification in API


• Motivation: Policy gradient methods can be seen as an instance of API, where 
the greedification step is not fully greedy. Instead, the policy parameters are 
only updated a part of the way to the greedy policy. This contrasts methods 
like Q-learning. There is some reason to believe, however, that avoiding fully 
greedy steps is beneficial for stability in learning and convergence to better 
solutions, particularly as the action-values are incorrect during learning. We 
investigate the benefits, if any, of using partially greedy steps in a simple toy 
environment. We vary the accuracy of the action-values during learning (both 
due to estimation and approximation), as well as the amount of greedification 
per step, within Soft Actor-Critic for discrete action problems.  



Identifying a question and steps

• Question: do n-step methods for learning values in Actor-Critic help?


• Step 1: Hypothesize why they could help (e.g., more accurate value estimates 
and so lower bias in the gradient estimate)


• Step 2: Pick an environment on which to test this


• Step 3: Implement the standard Actor-critic algorithm, with n = 1, including 
specifying the function approximator (e.g., start with tile-coding)


• Step 4: Run the experiment with just that implementation, and ensure you 
have a clear set-up



Finding topics and groups

• Goals: to meet your fellow classmates, start finding potential collaborators 
and start finding a project


• In your group, answer the following questions:


• Do you already have a project in mind? If yes, what is it?  

• If no, what topics are you interested in?


• After discussing with the first group for 10 minutes, we can do one more 
random shuffle


