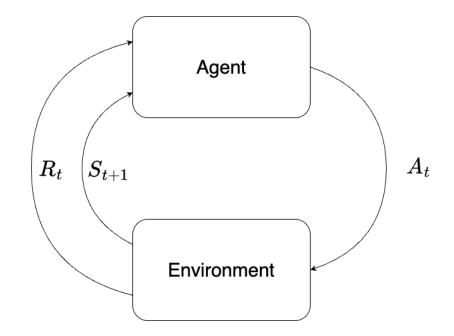
CMPUT 655 Lecture 2: Probability Theory Intro

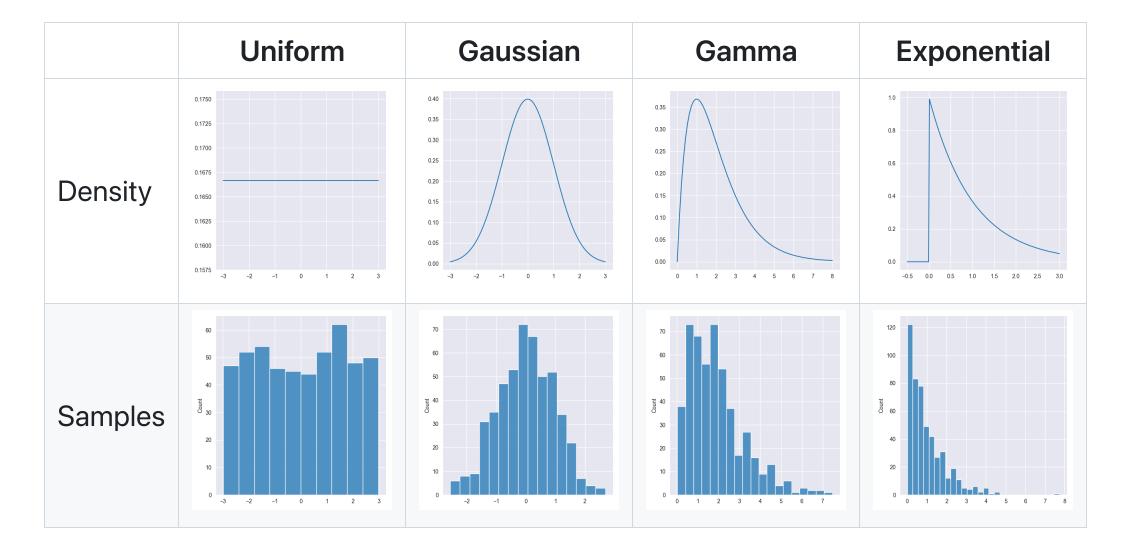
What is a random variable?

Random Variables: in Context

- ullet R_t reward in a given state following a given action
- ullet S_{t+1} next state, given a previous state and an action
- A_t action chosen by our policy



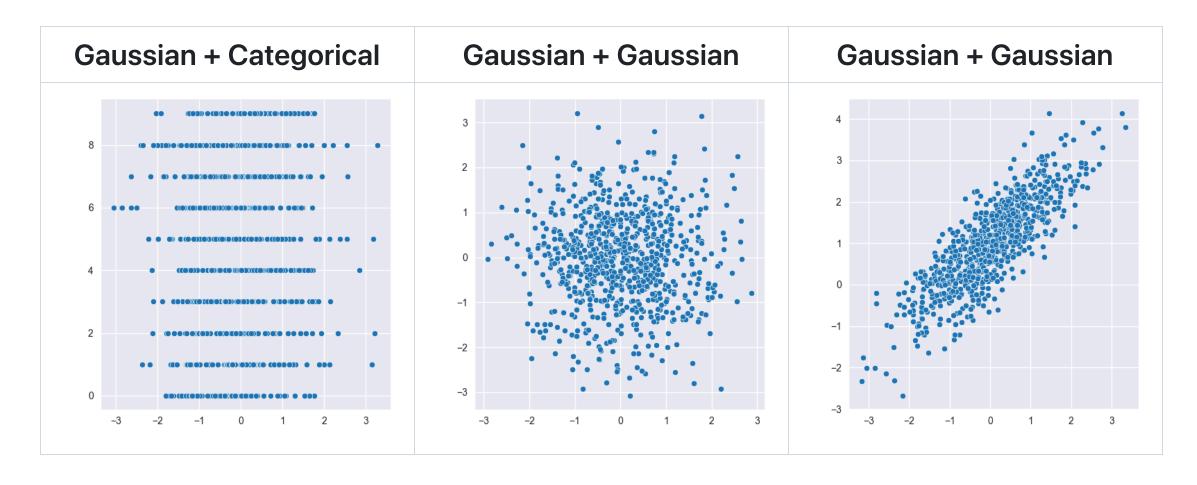
Distributions



Distributions: Notation

	Discrete	Continuous	
PDF	$\Pr\{\xi=x\}=p_{\xi}(x)$	$\Pr\{\xi=x\} \neq f_\xi(x)$	sums/integrates to 1
CDF	$F_{\xi}(x) = \Pr\{\xi \leq x\} = \sum_{\omega \leq x} p(\omega)$	$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(x) dx$	0 as $x o -\infty$, and 1 as $x o +\infty$

Joint Distributions



Marginal Distributions

Discrete	Continuous
$\Pr\{\xi=x\}=\sum_{i=0}^N\Pr\{\xi=x,\eta=y_i\}$	$f_{\xi}(x) = \int_{-\infty}^{+\infty} f_{\xi,\eta}(x,y) dy$

Conditional Distributions

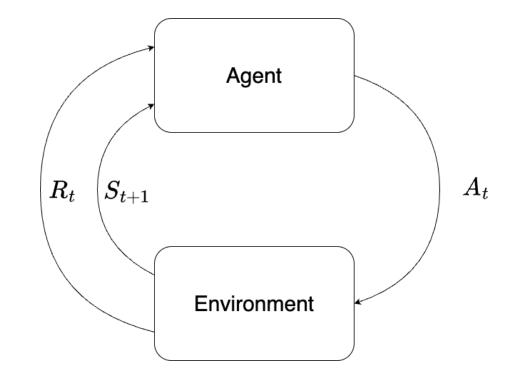
Discrete	Continuous
$\Pr\{\xi = x \eta = y\} = \frac{\Pr\{\xi = x, \eta = y\}}{\Pr\{\xi = x\}}$	$f_{\xi}(x y) = rac{f_{\xi,\eta}(x,y)}{f_{\eta}(y)}$

Bayes Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Distributions: in Context

- ullet $\Pr\{R_t=r\,|\,S_t,A_t\}$ or $f(r|S_t,A_t)$
- $\bullet \ \Pr\{S_{t+1} = s \,|\, S_t, A_t\}$
- $\pi(a|S_t)$



Independance

 ξ and η are independent if:

$$ullet F_{\xi,\eta}(x,y) = F_{\xi}(x) \cdot F_{\eta}(y)$$

•
$$\Pr\{\xi = x | \eta = y\} = \Pr\{\xi = x\} \, \forall x, y$$

$$ullet f_{\xi}(x|y) = f_{\xi}(x) \, orall x, y$$

Expectation

Discrete	Continuous	Empirical Approx.
$\mathbb{E} \xi = \sum_{i=0}^N p(x_i) \cdot x_i$	$\mathbb{E} \xi = \int_{-\infty}^{\infty} x f_{\xi}(x) dx$	$\mathbb{E} \xi pprox rac{1}{N} \sum_{i=0}^N \xi_i$

Mode & Median

	Discrete	Continuous
Mode	$rg \max p(x_i)$	$rg \max f_{\xi}(x)$
Median	$x_0: \Pr\{\xi < x_0\} = \Pr\{\xi > x_0\} = 0.5$	$F_{\xi}(x_0)=0.5$

Conditional Expectation

Discrete	Continuous
$\mathbb{E}[\xi \eta=y] = \sum_{i=0}^N x_i ext{Pr}\{\xi=x_i \eta=y\}$	$\mathbb{E}[\xi \eta=y]=\int_{-\infty}^{+\infty}xf_{\xi}(x y)dx$

Example #1

(on p. 49 of the RL book)

$$egin{aligned} r(s,a) &\doteq \mathbb{E}[R_t|S_{t-1} = s, A_{t-1} = a] \ &= \sum_{r \in \mathcal{R}} r \cdot \Pr\{R_t = r|S_{t-1} = s, A_{t-1} = a\} \ &= \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} \Pr\{S_{t+1} = s', R_t = r|S_{t-1}, A_{t-1} = a\} \end{aligned}$$

marginalizing out the next state

Example #2 (Bellman Equation)

(on p. 59 of the RL book)

$$egin{aligned} v &\doteq \mathbb{E}_{\pi}[G_t|S_t = s] \ &= \mathbb{E}_{\pi}[R_t + \gamma G_t|S_t = s] \ &= ? \end{aligned}$$

Variance

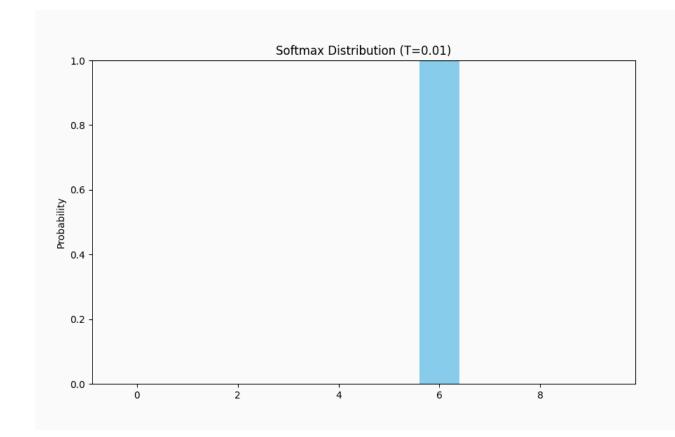
$$\mathrm{Var} \xi = \mathbb{E}(\xi - \mathbb{E} \xi)^2 = \mathbb{E} \xi^2 - (\mathbb{E} \xi)^2 = egin{cases} \sum_{i=0}^N (x_i - \mathbb{E} \xi)^2 \mathrm{Pr} \{\xi = x_i\}, ext{ discrete}, \ \int_{-\infty}^{+\infty} (x - \mathbb{E} \xi)^2 f_{\xi}(x) dx, ext{ continuous} \end{cases}$$

Entropy

	Discrete (Shannon Entropy)	Continuous (Differential Entropy)
$H(\xi)$	$-\sum_{x\in\mathcal{X}}p(x)\log p(x)$	$-\int_{\mathcal{X}} f(x) \log f(x) dx$

Softmax / Gibbs / Boltzmann

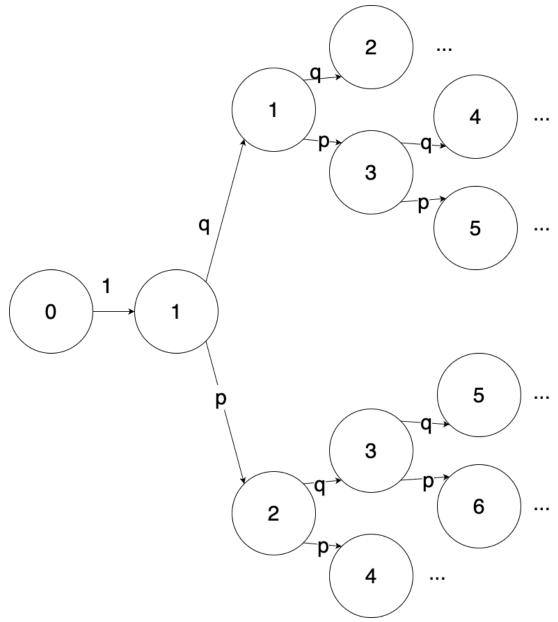
$$ext{softmax}(ec{x};T)_i = rac{e^{rac{x_i}{T}}}{\sum_{j=0}^N e^{rac{x_j}{T}}}$$



Markov Processes

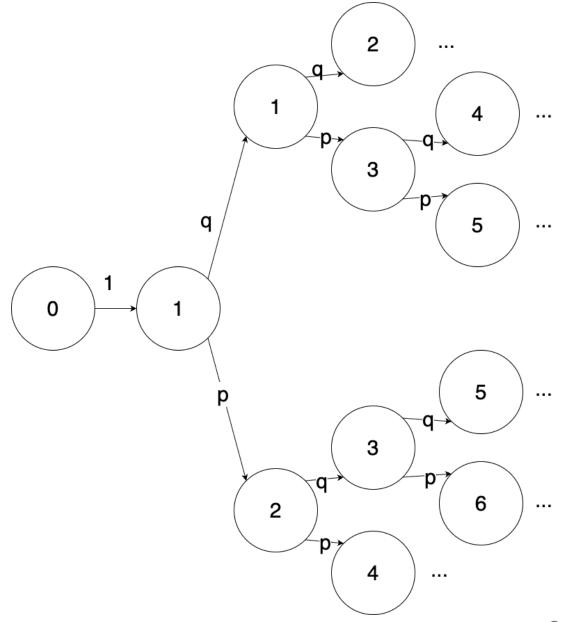
Markov Property. The future depends only on the present:

$$egin{aligned} & \Pr\{X_{t+1}|X_t,X_{t-1},\dots,X_0\} \ & \dot{=} \Pr\{X_{t+1}|X_t\} \end{aligned}$$



Example #3

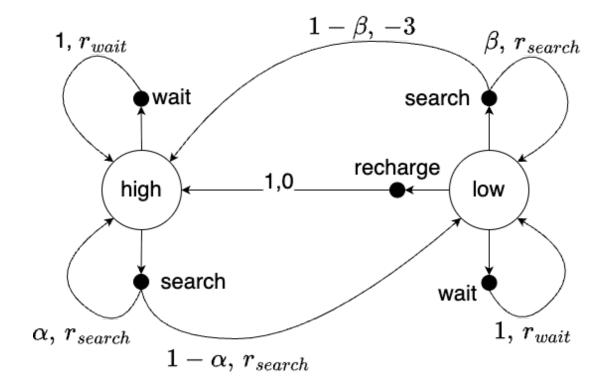
- $X_0 = 0, X_1 = 1$
- $X_n = X_{n-1} + X_{n-2} + \varepsilon_n$
- $arepsilon_n-\operatorname{iid},\Pr\{arepsilon_n=1\}=p$, $\Pr\{arepsilon_n=0\}=q=1-p$



Markov Decision Processes

 $(\mathcal{S}, \mathcal{A}, p, r)$:

- ullet $S_{t+1} \sim p(s'|S_t=s,A_t=a)$
- $r(s,a) = \mathbb{E}[R_t|S_t = s, A_t = a]$



Q&A