Course Review

CMPUT 655
Fall 2020



Comments

e Practice midterm and practice final questions available

e Midterm will be on eClass, during class, for 1 hour 20 minutes
e |’ll show you the format with a small practice midterm before Monday

e |f you want more exercise questions, see the worksheets given in CMPUT 397
e Schedule: https://marthawhite.github.io/rlcourse/schedule.html

e e.g., https://marthawhite.github.io/rlcourse/docs/w-c1m3.pdf
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C1M1: Sequential Decision-Making

e Video 1: The K-Armed Bandit Problem
e \ideo 2: Estimating Action Values
e sample-average, greedy action-selection, exploration-exploitation dilemma
e \ideo 3: Estimating Action Values Incrementally
e \Video 4-6: The Exploration-Exploitation Trade-off and Exploration Methods

e gpsilon-greedy, optimistic initial values, upper confidence bounds



Ci1M2: MDPs

Video 1: Markov Decision Processes

Video 2: Examples of MDPs

Video 3: The Goal of Reinforcement Learning (and reward hypothesis)
Video 4: Continuing Tasks

Video 5: Examples of Episodic Tasks and Continuing Tasks


https://www.coursera.org/lecture/fundamentals-of-reinforcement-learning/markov-decision-processes-8T0GQ

C1Ma3: Value Functions and
Bellman Equations

Video 1: Policies (stochastic and deterministic)
Video 2: Value Functions

Video 3: Bellman Equation Derivation

Video 4: Why Bellman Equations?

Video 5: Optimal Policies

Video 6: Using Optimal Value Functions to get Optimal Policies



Selt-test: C1M3

e |s the following policy valid for this MDP
(i.e. does if fit our definition of a policy):
Choose left for five steps, then right for
five steps, then left for five steps, and so
on? Explain your answer.

left

[+

right

l

+4



C1M4: Dynamic Programming

Video 1: Policy Evaluation vs. Control

Video 2: lterative Policy Evaluation (to compute a value function)

Video 3: Policy Improvement

e policy improvement theorem, using value functions to produce a better policy
Video 4: Policy lteration (to compute an optimal policy)

Video 5: Flexibility of the Policy lteration Framework (and GPI)

Video 6: Efficiency of Dynamic Programming (and bootstrapping)



C1M4: Dynamic Programming

Video 1: Policy Evaluation vs. Control

Video 2: lterative Policy Evaluation (to compute a value function)

Video 3: Policy Improvement

e policy improvement theorem, using value functions to produce a better policy
Video 4: Policy lteration (to compute an optimal policy)

Video 5: Flexibility of the Policy lteration Framework (and GPI)

Video 6: Efficiency of Dynamic Programming (and bootstrapping)



Policy Improvement Result
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Difference between v and g

e “Why does the lower golf example
(figure 3.3) which is supposed to be
optimal have a -2 field over most of the
green, where the above example with
the putter has that area marked as only
-17? Isn't g*() supposed to be optimal?
There should be no areas where g*()
has a worse result than v putt, right?”

g« (s,driver)

Figure 3.3: A golf example: the state-value func-
tion for putting (upper) and the optimal action-
value function for using the driver (lower). H

-2
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C2M1: Monte-Carlo for
Prediction and Control

Video 1: What is Monte Carlo?

Video 2: Using Monte Carlo for Prediction

Video 3: Using Monte Carlo to Estimate Action-Values

e discussed importance of maintaining exploration

Video 4: Using Monte Carlo Methods for Generalized Policy Iteration
Video 5: Solving the Blackjack Example

Video 6: Epsilon-Soft Policies (alternative to exploring starts)



Self-test: Exploration in MC

e Why did we talk about exploring starts in MC when estimating action-values, but
not when estimating state values?

e Can we use state-values for control in MC, like we did in DP?



C2M1: Monte-Carlo for
Prediction and Control

Video 4: Using Monte Carlo Methods for Generalized Policy Iteration
Video 5: Solving the Blackjack Example

Video 6: Epsilon-Soft Policies (alternative to exploring starts)

Video 7: Why Does Off-Policy Learning Matter?

o utility for exploration, discussed target policies and behavior policies
Video 8: Importance Sampling

Video 9: Off-Policy MC Prediction
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C2M1: TD for Prediction

e Video 1: What is Temporal Difference Learning?
e \ideo 2: The Advantages of Temporal Difference Learning
e advantages of both DP (bootstrapping) and MC (sample-based learning)

e Video 3: Comparing TD and Monte Carlo



Dynamic programming Simple Monte Carlo
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C2M3: TD for Control

Video 1: Sarsa: GPIl with TD

e Building an algorithm to find near optimal policies: SARSA (State, Action, Reward,
Next State, Action). Combining the ideas of policy evaluation, policy improvement,
ID, and epsilon-soft policies

Video 2: Sarsa in the Windy Grid World
Video 3: What is Q-learning
Video 4: Q-learning in the Windy Gridworld

Video 5: How is Q-learning Off-policy?



Self-test

e What is the target policy for Q-learning?

e What can the behavior policy be?



Self-test

e What is the target policy for Q-learning?

e Answer: Q-learning learns about the greedy policy (which eventually becomes

"), while following a different policy (e.g., e-greedy). That is off-policy, but there
are no importance sampling corrections!

e What can the behavior policy be?



C2M3: TD for Control

Video 3: What is Q-learning

Video 4: Q-learning in the Windy Gridworld
Video 5: How is Q-learning Off-policy?
Video 6: Expected SARSA

Video 7: Expected SARSA in the Cliff World

Video 8: The Generality of Expected SARSA



Terminology Review

1D methods we have learned about are tabular, one-step, model-free learning
algorithms

Tabular: we store the value function in a table. One entry in the table per value, so
each value is stored independently of the others. We are implicitly assuming the

state-space (&) is small

One-step: we update a single state or state-action value on each time-step. Only
the value of Q(S,A) from S -- A --->S',R. We never update more than one value per
learning step

Model-free: we don't assume access to or make use of a model of the world. All
learning Is driven by sample experience. Data generated by the agent interacting
with the environment



I1co *

r N
Do we already have C
access to a model? O U rse 2
\_ Y,
Yes No

N 4 N
5 a Module 4 Will we learn a
oblem? model?

Y, _ Y,

Yes No
No ~ N
each timestep?
\_ Y,
Yes No

> lterative P_olicy

Evaluation - ~ - ~

Is this a Is this a
control problem? control problem?
- Y, - Y,
Yes No No Yes

Expected SARSA @ o Off-Policy MC MC Prediction @ Explorll\;;(g: Starts



C2M1: Planning, Learning and Acting

e \ideo 1: What is a Model?

e Video 2: Comparing Sample and Distribution Models
e Video 3: Random Tabular, Q-planning

e \ideo 4: The Dyna Architecture

e \Video 5: The Dyna Algorithm



Tabular Dyna-Q



C2M4: Planning, Learning and Acting

e \Video 4: The Dyna Architecture

e \Video 5: The Dyna Algorithm

e Video 6: Dyna & Q-learning in a Simple Maze
e \ideo 7: What if the model is inaccurate?

e \ideo 8: In-depth with changing environments



Terminology Review

Model: a model of the environment. Anything that can predict how the environment will respond to the
agent's actions: M(S,A) --->S',R

Planning: the computational process that takes the model as input and produces or improves the policy

Sample Model: a model that can produce a possible next state and reward, in agreement with the
underlying transition probabilities of the world. We need not store all the probabilities to do this (think
about epsilon-greedy)

Simulate: sample a transition from the model. Given an S and A, ask the model for a possible next state
S' and reward R

Simulated Experience: samples generated by a sample model. Like dreaming or imagining things that
could happen

Real Experience: the states, actions, and rewards that are produced when an agent interacts with the
real world.

Search Control: the computational process that selects the state and action in the planning loop
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C3M1: Prediction with Approximation

e \Video 1: Moving to Parameterized Functions

e Video 2: Generalization and Discrimination (and how we want both)
e Video 3: Framing Value Estimation as Supervised Learning

e Video 4: Value Error

e role of state distribution in the objective



The Mean Squared Value Error Objective
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Question: Why didn’t we use the Value Error in the tabular setting?



C3M1: Prediction with Approximation

e \ideo 5: Introducing Gradient Descent

e Video 6: Gradient Monte Carlo for Policy Evaluation

e Video 7. State Aggregation with Monte Carlo

e Video 8: Semi-gradient TD for Policy Evaluation

e Video 9: Comparing TD and MC with State Aggregation
e \ideo 10: The Linear TD Algorithm

e Video 11: The True Objective for TD



C3M2: Constructing Features

Video 1: Coarse Coding
Video 2: Generalization Properties of Coarse Coding

Video 3: Tile Coding

Video 4: Using Tile Coding for Prediction
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C3M2: Constructing Features

Video 5: What is a Neural Network

Video 6: Non-linear Approximation with Neural Networks
Video 7: Deep Neural Networks

Video 8: How to compute the gradient

Video 9: Optimization Strategies for NNs

e |nitialization, vector stepsizes, momentum



Which will work better on the Random

e State aggregation?
e Tile Coding?

e ANN?

Walk?
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C3Ma3: Control with Approximation

e Video 1: Episodic Sarsa with Function Approximation
e Video 2: Episodic Sarsa in Mountain Car
e Video 3: Expected Sarsa with Function Approximation
e \ideo 4: Exploration under Function Approximation

e difficulties using optimisitic initial values

e \ideo 5: Average Reward: A New Way of Formulating Control Problems



How Optimism Interacts with Generalization

Single feature Tile coding Neural network



Self-test

e We discussed multiple ways to incorporate actions under FA
e Action-dependent features, where we stack state features

e e.g., tile code input state to get d features, weights are d x |A| size and state-
action features are all zero except in the a location, which has those d features

e How do we incorporate the action in a NN?



C3M4: Policy Gradient

e | will not test you on average reward, nor on policy gradient

e | am skipping this in the review



Let’s go through the practice quizzes



