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Comments
• Practice midterm and practice final questions available


• Midterm will be on eClass, during class, for 1 hour 20 minutes


• I’ll show you the format with a small practice midterm before Monday


• If you want more exercise questions, see the worksheets given in CMPUT 397:


• Schedule: https://marthawhite.github.io/rlcourse/schedule.html


• e.g., https://marthawhite.github.io/rlcourse/docs/w-c1m3.pdf
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C1M1: Sequential Decision-Making

• Video 1: The K-Armed Bandit Problem


• Video 2: Estimating Action Values


• sample-average, greedy action-selection, exploration-exploitation dilemma


• Video 3: Estimating Action Values Incrementally 


• Video 4-6: The Exploration-Exploitation Trade-off and Exploration Methods


• epsilon-greedy, optimistic initial values, upper confidence bounds



C1M2: MDPs

• Video 1: Markov Decision Processes


• Video 2: Examples of MDPs


• Video 3: The Goal of Reinforcement Learning (and reward hypothesis)


• Video 4: Continuing Tasks


• Video 5: Examples of Episodic Tasks and Continuing Tasks

https://www.coursera.org/lecture/fundamentals-of-reinforcement-learning/markov-decision-processes-8T0GQ


C1M3: Value Functions and  
Bellman Equations

• Video 1: Policies (stochastic and deterministic)


• Video 2: Value Functions


• Video 3: Bellman Equation Derivation 


• Video 4: Why Bellman Equations?


• Video 5: Optimal Policies


• Video 6: Using Optimal Value Functions to get Optimal Policies



Selt-test: C1M3

• Is the following policy valid for this MDP 
(i.e. does if fit our definition of a policy): 
Choose left for five steps, then right for 
five steps, then left for five steps, and so 
on? Explain your answer.



C1M4: Dynamic Programming
• Video 1: Policy Evaluation vs. Control


• Video 2: Iterative Policy Evaluation (to compute a value function)


• Video 3: Policy Improvement 


• policy improvement theorem, using value functions to produce a better policy


• Video 4: Policy Iteration (to compute an optimal policy)


• Video 5: Flexibility of the Policy Iteration Framework (and GPI)


• Video 6: Efficiency of Dynamic Programming (and bootstrapping)



C1M4: Dynamic Programming
• Video 1: Policy Evaluation vs. Control


• Video 2: Iterative Policy Evaluation (to compute a value function)


• Video 3: Policy Improvement 


• policy improvement theorem, using value functions to produce a better policy


• Video 4: Policy Iteration (to compute an optimal policy)


• Video 5: Flexibility of the Policy Iteration Framework (and GPI)


• Video 6: Efficiency of Dynamic Programming (and bootstrapping)



Policy Improvement Result

78 Chapter 4: Dynamic Programming

following the existing policy, ⇡. The value of this way of behaving is

q⇡(s, a)
.
= E[Rt+1 + �v⇡(St+1) | St =s, At =a] (4.6)

=
X

s0,r

p(s0, r |s, a)
h
r + �v⇡(s0)

i
.

The key criterion is whether this is greater than or less than v⇡(s). If it is greater—that
is, if it is better to select a once in s and thereafter follow ⇡ than it would be to follow
⇡ all the time—then one would expect it to be better still to select a every time s is
encountered, and that the new policy would in fact be a better one overall.

That this is true is a special case of a general result called the policy improvement
theorem. Let ⇡ and ⇡0 be any pair of deterministic policies such that, for all s 2 S,

q⇡(s, ⇡0(s)) � v⇡(s). (4.7)

Then the policy ⇡0 must be as good as, or better than, ⇡. That is, it must obtain greater
or equal expected return from all states s 2 S:

v⇡0(s) � v⇡(s). (4.8)

Moreover, if there is strict inequality of (4.7) at any state, then there must be strict
inequality of (4.8) at that state.

The policy improvement theorem applies to the two policies that we considered at the
beginning of this section, an original deterministic policy: ⇡, and a changed policy, ⇡0,
that is identical to ⇡ except that ⇡0(s) = a 6= ⇡(s). For states other than s, (4.7) holds
because the two sides are equal. Thus, if q⇡(s, a) > v⇡(s), then the changed policy is
indeed better than ⇡.

The idea behind the proof of the policy improvement theorem is easy to understand.
Starting from (4.7), we keep expanding the q⇡ side with (4.6) and reapplying (4.7) until
we get v⇡0(s):

v⇡(s)  q⇡(s, ⇡0(s))

= E[Rt+1 + �v⇡(St+1) | St =s, At =⇡0(s)] (by (4.6))

= E⇡0[Rt+1 + �v⇡(St+1) | St =s]

 E⇡0[Rt+1 + �q⇡(St+1, ⇡
0(St+1)) | St =s] (by (4.7))

= E⇡0[Rt+1 + �E[Rt+2 + �v⇡(St+2)|St+1, At+1 =⇡0(St+1)] | St =s]

= E⇡0
⇥
Rt+1 + �Rt+2 + �2v⇡(St+2)

�� St =s
⇤

 E⇡0
⇥
Rt+1 + �Rt+2 + �2Rt+3 + �3v⇡(St+3)

�� St =s
⇤

...

 E⇡0
⇥
Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · ·

�� St =s
⇤

= v⇡0(s).

So far we have seen how, given a policy and its value function, we can easily evaluate
a change in the policy at a single state to a particular action. It is a natural extension



Difference between v and q

• “Why does the lower golf example 
(figure 3.3) which is supposed to be 
optimal have a -2 field over most of the 
green, where the above example with 
the putter has that area marked as only 
-1? Isn't q*() supposed to be optimal? 
There should be no areas where q*() 
has a worse result than v putt, right?”

3.5. Policies and Value Functions 61

rewards important, or only the intervals between them? Prove, using (3.8), that adding a
constant c to all the rewards adds a constant, vc, to the values of all states, and thus
does not a↵ect the relative values of any states under any policies. What is vc in terms
of c and �? ⇤
Exercise 3.16 Now consider adding a constant c to all the rewards in an episodic task,
such as maze running. Would this have any e↵ect, or would it leave the task unchanged
as in the continuing task above? Why or why not? Give an example. ⇤
Example 3.6: Golf To formulate playing a hole of golf as a reinforcement learning
task, we count a penalty (negative reward) of �1 for each stroke until we hit the ball
into the hole. The state is the location of the ball. The value of a state is the negative of
the number of strokes to the hole from that location. Our actions are how we aim and
swing at the ball, of course, and which club we select. Let us take the former as given
and consider just the choice of club, which we assume is either a putter or a driver. The
upper part of Figure 3.3 shows a possible state-value function, vputt(s), for the policy that

Q*(s,driver)

V
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Figure 3.3: A golf example: the state-value func-
tion for putting (upper) and the optimal action-
value function for using the driver (lower).

always uses the putter. The terminal
state in-the-hole has a value of 0. From
anywhere on the green we assume we can
make a putt; these states have value �1.
O↵ the green we cannot reach the hole
by putting, and the value is greater. If
we can reach the green from a state by
putting, then that state must have value
one less than the green’s value, that is,
�2. For simplicity, let us assume we can
putt very precisely and deterministically,
but with a limited range. This gives us
the sharp contour line labeled �2 in the
figure; all locations between that line and
the green require exactly two strokes to
complete the hole. Similarly, any location
within putting range of the �2 contour
line must have a value of �3, and so
on to get all the contour lines shown in
the figure. Putting doesn’t get us out of
sand traps, so they have a value of �1.
Overall, it takes us six strokes to get from
the tee to the hole by putting.

r

s0

s, a

a0
⇡

p

q⇡ backup diagram

Exercise 3.17 What is the Bellman equation for action values, that
is, for q⇡? It must give the action value q⇡(s, a) in terms of the action
values, q⇡(s0, a0), of possible successors to the state–action pair (s, a).
Hint: The backup diagram to the right corresponds to this equation.
Show the sequence of equations analogous to (3.14), but for action
values. ⇤
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C2M1: Monte-Carlo for  
Prediction and Control

• Video 1: What is Monte Carlo?


• Video 2: Using Monte Carlo for Prediction


• Video 3: Using Monte Carlo to Estimate Action-Values


• discussed importance of maintaining exploration


• Video 4: Using Monte Carlo Methods for Generalized Policy Iteration


• Video 5: Solving the Blackjack Example


• Video 6: Epsilon-Soft Policies (alternative to exploring starts)



Self-test: Exploration in MC

• Why did we talk about exploring starts in MC when estimating action-values, but 
not when estimating state values?


• Can we use state-values for control in MC, like we did in DP?



C2M1: Monte-Carlo for  
Prediction and Control

• Video 4: Using Monte Carlo Methods for Generalized Policy Iteration


• Video 5: Solving the Blackjack Example


• Video 6: Epsilon-Soft Policies (alternative to exploring starts)


• Video 7: Why Does Off-Policy Learning Matter?


• utility for exploration, discussed target policies and behavior policies


• Video 8: Importance Sampling


• Video 9: Off-Policy MC Prediction
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C2M1: TD for Prediction

• Video 1: What is Temporal Difference Learning?


• Video 2: The Advantages of Temporal Difference Learning


• advantages of both DP (bootstrapping) and MC (sample-based learning)


• Video 3: Comparing TD and Monte Carlo



Dynamic programming

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 2

cf. Dynamic Programming

T

T T TT

TT

T

TT

T

T

T

V (St )← Eπ Rt+1 + γV (St+1)[ ]
St

=
X

a

⇡(a|St)
X

s0,r

p(s0, r|St, a)[r + �V (s0)]

r
a

s0

R. S. Sutton and A. G. Barto: Reinforcement Learning: An Introduction 3
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C2M3: TD for Control
• Video 1: Sarsa: GPI with TD


• Building an algorithm to find near optimal policies: SARSA (State, Action, Reward, 
Next State, Action). Combining the ideas of policy evaluation, policy improvement, 
TD, and epsilon-soft policies


• Video 2: Sarsa in the Windy Grid World


• Video 3: What is Q-learning


• Video 4: Q-learning in the Windy Gridworld


• Video 5: How is Q-learning Off-policy?



Self-test

• What is the target policy for Q-learning? 


• What can the behavior policy be? 



Self-test

• What is the target policy for Q-learning? 


• Answer: Q-learning learns about the greedy policy (which eventually becomes 
π*), while following a different policy (e.g., ε-greedy). That is off-policy, but there 
are no importance sampling corrections!


• What can the behavior policy be? 



C2M3: TD for Control
• Video 3: What is Q-learning


• Video 4: Q-learning in the Windy Gridworld


• Video 5: How is Q-learning Off-policy?


• Video 6: Expected SARSA


• Video 7: Expected SARSA in the Cliff World


• Video 8: The Generality of Expected SARSA



Terminology Review
• TD methods we have learned about are tabular, one-step, model-free learning 

algorithms


• Tabular: we store the value function in a table. One entry in the table per value, so 
each value is stored independently of the others. We are implicitly assuming the 
state-space (𝒮) is small


• One-step: we update a single state or state-action value on each time-step. Only 
the value of Q(S,A) from S -- A --->S',R. We never update more than one value per 
learning step


• Model-free: we don't assume access to or make use of a model of the world. All 
learning is driven by sample experience. Data generated by the agent interacting 
with the environment
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C2M1: Planning, Learning and Acting

• Video 1: What is a Model?


• Video 2: Comparing Sample and Distribution Models


• Video 3: Random Tabular, Q-planning


• Video 4: The Dyna Architecture


• Video 5: The Dyna Algorithm
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C2M4: Planning, Learning and Acting

• Video 4: The Dyna Architecture


• Video 5: The Dyna Algorithm


• Video 6: Dyna & Q-learning in a Simple Maze


• Video 7: What if the model is inaccurate?


• Video 8: In-depth with changing environments



Terminology Review
• Model: a model of the environment. Anything that can predict how the environment will respond to the 

agent's actions: M(S,A) --->S',R


• Planning: the computational process that takes the model as input and produces or improves the policy


• Sample Model: a model that can produce a possible next state and reward, in agreement with the 
underlying transition probabilities of the world. We need not store all the probabilities to do this (think 
about epsilon-greedy)


• Simulate: sample a transition from the model. Given an S and A, ask the model for a possible next state 
S' and reward R


• Simulated Experience: samples generated by a sample model. Like dreaming or imagining things that 
could happen


• Real Experience: the states, actions, and rewards that are produced when an agent interacts with the 
real world. 


• Search Control: the computational process that selects the state and action in the planning loop
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C3M1: Prediction with Approximation

• Video 1: Moving to Parameterized Functions


• Video 2: Generalization and Discrimination (and how we want both)


• Video 3: Framing Value Estimation as Supervised Learning


• Video 4: Value Error


• role of state distribution in the objective



State

Value

̂v(s, w)

vπ(s)

The Mean Squared Value Error Objective

[vπ(s) − ̂v(s, w)]2

The fraction of 
time we spend in    
when following 
policy

s
π

μ(s)Mean Squared 
Value Error ∑

s

Question: Why didn’t we use the Value Error in the tabular setting?



C3M1: Prediction with Approximation
• Video 5: Introducing Gradient Descent


• Video 6: Gradient Monte Carlo for Policy Evaluation


• Video 7: State Aggregation with Monte Carlo


• Video 8: Semi-gradient TD for Policy Evaluation


• Video 9: Comparing TD and MC with State Aggregation


• Video 10: The Linear TD Algorithm


• Video 11: The True Objective for TD



C3M2: Constructing Features

• Video 1: Coarse Coding


• Video 2: Generalization Properties of Coarse Coding


• Video 3: Tile Coding


• Video 4: Using Tile Coding for Prediction



Broadness of generalization



Direction of generalization



C3M2: Constructing Features
• Video 5: What is a Neural Network


• Video 6: Non-linear Approximation with Neural Networks


• Video 7: Deep Neural Networks


• Video 8: How to compute the gradient


• Video 9: Optimization Strategies for NNs


• initialization, vector stepsizes, momentum



Which will work better on the Random 
Walk?

• State aggregation?


• Tile Coding? 


• A NN?



C3M3: Control with Approximation
• Video 1: Episodic Sarsa with Function Approximation


• Video 2: Episodic Sarsa in Mountain Car


• Video 3: Expected Sarsa with Function Approximation


• Video 4: Exploration under Function Approximation


• difficulties using optimisitic initial values


• Video 5: Average Reward: A New Way of Formulating Control Problems



How Optimism Interacts with Generalization

Single feature Tile coding Neural network



Self-test

• We discussed multiple ways to incorporate actions under FA


• Action-dependent features, where we stack state features


• e.g., tile code input state to get d features, weights are d x |A| size and state-
action features are all zero except in the a location, which has those d features


• How do we incorporate the action in a NN?



C3M4: Policy Gradient

• I will not test you on average reward, nor on policy gradient


• I am skipping this in the review



Let’s go through the practice quizzes


