Mini-Course 1, Module 4
Dynamic Programming

CMPUT 397
Fall 2020

Reminders: Sept 28, 2020

e Discussion Session during class on Wednesday
e A guestion you might have: Do | have to go? Answer: Yes

e Any questions?

Review of C1M4
Dynamic Programming

Video 1: Policy Evaluation vs. Control

e |ntroduce the two classic problems of RL: prediction and control. Classic
assumptions of DP

e (Goals:
 Understand the distinction between policy evaluation and control

e Explain the setting in which dynamic programming can be applied, as well as its
limitations

Video 2: Iterative Policy Evaluation

e How to turn Bellman equations into algorithms for computing value functions and
policies

e (Goals:

e Qutline the iterative policy evaluation algorithm for estimating state values for a
given policy

e Apply iterative policy evaluation to compute value functions, in an example MDP

Video 3: Policy Improvement

e Key theoretical result in RL and DP! How to make the policy better using the value
function

e (Goals:

e Understand the policy improvement theorem; and how it can be used to
construct improved policies

* And use the value function for a policy to produce a better policy

Video 4: Policy lteration

e Qur first control algorithm. Why sequencing evaluation and improvement works!
e (Goals:
e Qutline the policy iteration algorithm for finding the optimal policy;

e Understand “the dance of policy and value”, how policy iteration reaches the
optimal policy by alternating between evaluating a policy and improving it

e Apply policy iteration to compute optimal policies and optimal value functions

Video 5: Flexibility of the Policy lteration
Framework

e (Generalized Policy Iteration: a general framework for control
e Goals:
e Understand the framework of generalized policy iteration
e Qutline value iteration, an important special case of generalized policy iteration

e Differentiate synchronous and asynchronous dynamic programming methods

Video 6: Efficiency of Dynamic
Programming

e DP is actually pretty good, compared to other approaches! What's the deal with
Bootstrapping?

e Goals:

 Describe Monte-Carlo sampling as an alternative method for learning a value
function

 Describe brute force search as an alternative method for finding an optimal policy;
and

e Understand the advantages of Dynamic programming and “bootstrapping” over
these alternatives.

Key lerminology

Policy evaluation
Policy improvement
Policy iteration
Value iteration

Generalized policy iteration

More Definitions and lerminology

e “I'm confused about what v_k is, my interpretation is its the state-value function for
an arbitrary policy. | don't believe that is correct though. What is v_k?” —> It is our
value estimate on the k-th step of Iterative Policy Evaluation

Difference between v and g

e “Why does the lower golf example
(figure 3.3) which is supposed to be
optimal have a -2 field over most of the
green, where the above example with
the putter has that area marked as only
-17? Isn't g*() supposed to be optimal?
There should be no areas where g*()
has a worse result than v putt, right?”

g« (s,driver)

Figure 3.3: A golf example: the state-value func-
tion for putting (upper) and the optimal action-
value function for using the driver (lower). H

-2

Value lteration vs Policy lteration

e “When would we ever not want to use Value lteration?”

e “Since value iteration only need one "sweep"”, does it means value iteration is less
precise and need take more iteration to find the optimal policy than the policy
iteration?”

Exercise Question

e “What is the time complexity in policy/value iteration when doing an entire sweep?”

e Think about it in the worst-case, assuming deterministic reward outcomes that
dependons, a, s’

e Think about more typical cases, and so what could be an average case
performance

Convergence Criteria

e “lterative Policy Evaluation algorithnm will loop until the value function of the previous
state and current state hit a small enough value, is the small enough value a
predefined threshold, and what is the commonly used threshold in this case?”

e “For asynchronous updates, when do we know when we have v* ? How do we
determine if the value of v is unchanging since it has converged to v* or because we
haven't updated some states, and are we forcing the agent to eventually update all
states to check ?”

e “For policy evaluation part, under the same policy, why is our sequence of value
functions monotonously improving for every state?”

Policy Improvement

e “Why does the policy improvement theorem guarantee the new policy Is strictly
better than the old policy? Why can't the new policy be just as good as the old
policy if the optimal policy still has not been found?”

e “|In policy improvement video, you said that “policy pi prime is strictly better if the
value is strictly greater at least one state”, but what about other states? if one of the

state following pi prime have lower value than pi will pi prime still be strictly better
than pi?”

Policy Improvement Result

qr (s, 7 (5))

U[Rt1 4+ Y0r(Set1) | Se=s, Ay =7"(s)]

[Rip1 + Y0r(Se41) | St =5]

e [Rev1 + G (Stq1, 7 (St41)) | St =]

/[Rep1 + VE[Rev2 + y0r (Seg2)[Seg1, Aepr =7 (Se1)] | Se =]
:Rt+1 + YRiyo + 7 0r(Sty2) | St :3}

Ur (8)

1A

I IA

]
~

< Enr|[Rit1 +7Rev2 + v Riys +7°0r(Seys) | Se=s]
<En|Ris1 +YRiy2 + v’ Riys + 7V’ Riga+ -+ | Si=5s]

(O (S)

Asynchronous DP

“When we talked about dynamic programming we said that there was a way to do
the updates in place with a single array. How would that method look when doing the
updates asynchronously?”

*“What kind of DP algorithms are usually used to perform asynchronous updates?
How do we make sure such algorithms will update all states to guarantee
convergence?”

*“When is it more beneficial to perform a synchronous sweep rather than
asynchronous?”

“In the case that there are two separate arrays, the order that we update the values
does not matter. In the one array case, can it be done with random sampling?”

Additional Clarifications

e “is it possible to use DP in non-episodic models?” —> Yes

e “The Monte Carlo method which is quite famous is described to be a optimization of
averages of the policy taken over a lot of instances. This seems to me a very
unsophisticated method? So, why is such a method so widely used in RL?” —> Its
actually not very widely used

e “How do you make sure the optimal solution found by value iteration is global
maximum instead of local maximum?” —> we have not talked about having a
(smooth) optimization surface that could have local maxima. Value iteration is
guaranteed to converge to the optimal solution (the global max)

Practice Questions

A

= =

Y
actions

~—

p(6,—1|5, right) =

p(7,—1|7, right) =

1 2 3
4 5 6 /
38 9 10 |11
12 |13 |14

Rt:—l

on all transitions

p(10,7|5,right) =

Worksheet Q1

In iterative policy evaluation, we seek to find the value function for a policy m by
applying the Bellman equation many times to generate a sequence of value functions
v, that will eventually converge to the true value function v,.. How can we modity the
update below to generate a sequence of action value functions g7

ver1(s) = Y w(als) > p(s',rs,a) [r+ yor(s)

