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Reminders: Sept 28, 2020

• Discussion Session during class on Wednesday


• A question you might have: Do I have to go? Answer: Yes


• Any questions?



Review of C1M4 
Dynamic Programming



Video 1: Policy Evaluation vs. Control

• Introduce the two classic problems of RL: prediction and control. Classic 
assumptions of DP


• Goals:


• Understand the distinction between policy evaluation and control


• Explain the setting in which dynamic programming can be applied, as well as its 
limitations



Video 2: Iterative Policy Evaluation

• How to turn Bellman equations into algorithms for computing value functions and 
policies


• Goals:


• Outline the iterative policy evaluation algorithm for estimating state values for a 
given policy


• Apply iterative policy evaluation to compute value functions, in an example MDP



Video 3: Policy Improvement

• Key theoretical result in RL and DP! How to make the policy better using the value 
function


• Goals:


• Understand the policy improvement theorem; and how it can be used to 
construct improved policies


• And use the value function for a policy to produce a better policy



Video 4: Policy Iteration

• Our first control algorithm. Why sequencing evaluation and improvement works!


• Goals:


• Outline the policy iteration algorithm for finding the optimal policy;


• Understand “the dance of policy and value”, how policy iteration reaches the 
optimal policy by alternating between evaluating a policy and improving it


• Apply policy iteration to compute optimal policies and optimal value functions



Video 5: Flexibility of the Policy Iteration 
Framework

• Generalized Policy Iteration: a general framework for control

• Goals: 


• Understand the framework of generalized policy iteration 

• Outline value iteration, an important special case of generalized policy iteration 

• Differentiate synchronous and asynchronous dynamic programming methods



Video 6: Efficiency of Dynamic 
Programming

• DP is actually pretty good, compared to other approaches! What's the deal with 
Bootstrapping?

• Goals: 


• Describe Monte-Carlo sampling as an alternative method for learning a value 
function 

• Describe brute force search as an alternative method for finding an optimal policy; 
and 

• Understand the advantages of Dynamic programming and “bootstrapping” over 
these alternatives.



Key Terminology

• Policy evaluation


• Policy improvement


• Policy iteration


• Value iteration


• Generalized policy iteration



More Definitions and Terminology

• “I'm confused about what v_k is, my interpretation is its the state-value function for 
an arbitrary policy. I don't believe that is correct though. What is v_k?” —> It is our 
value estimate on the k-th step of Iterative Policy Evaluation



Difference between v and q

• “Why does the lower golf example 
(figure 3.3) which is supposed to be 
optimal have a -2 field over most of the 
green, where the above example with 
the putter has that area marked as only 
-1? Isn't q*() supposed to be optimal? 
There should be no areas where q*() 
has a worse result than v putt, right?”

3.5. Policies and Value Functions 61

rewards important, or only the intervals between them? Prove, using (3.8), that adding a
constant c to all the rewards adds a constant, vc, to the values of all states, and thus
does not a↵ect the relative values of any states under any policies. What is vc in terms
of c and �? ⇤
Exercise 3.16 Now consider adding a constant c to all the rewards in an episodic task,
such as maze running. Would this have any e↵ect, or would it leave the task unchanged
as in the continuing task above? Why or why not? Give an example. ⇤
Example 3.6: Golf To formulate playing a hole of golf as a reinforcement learning
task, we count a penalty (negative reward) of �1 for each stroke until we hit the ball
into the hole. The state is the location of the ball. The value of a state is the negative of
the number of strokes to the hole from that location. Our actions are how we aim and
swing at the ball, of course, and which club we select. Let us take the former as given
and consider just the choice of club, which we assume is either a putter or a driver. The
upper part of Figure 3.3 shows a possible state-value function, vputt(s), for the policy that
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Figure 3.3: A golf example: the state-value func-
tion for putting (upper) and the optimal action-
value function for using the driver (lower).

always uses the putter. The terminal
state in-the-hole has a value of 0. From
anywhere on the green we assume we can
make a putt; these states have value �1.
O↵ the green we cannot reach the hole
by putting, and the value is greater. If
we can reach the green from a state by
putting, then that state must have value
one less than the green’s value, that is,
�2. For simplicity, let us assume we can
putt very precisely and deterministically,
but with a limited range. This gives us
the sharp contour line labeled �2 in the
figure; all locations between that line and
the green require exactly two strokes to
complete the hole. Similarly, any location
within putting range of the �2 contour
line must have a value of �3, and so
on to get all the contour lines shown in
the figure. Putting doesn’t get us out of
sand traps, so they have a value of �1.
Overall, it takes us six strokes to get from
the tee to the hole by putting.
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Exercise 3.17 What is the Bellman equation for action values, that
is, for q⇡? It must give the action value q⇡(s, a) in terms of the action
values, q⇡(s0, a0), of possible successors to the state–action pair (s, a).
Hint: The backup diagram to the right corresponds to this equation.
Show the sequence of equations analogous to (3.14), but for action
values. ⇤



Value Iteration vs Policy Iteration

• “When would we ever not want to use Value Iteration?”


• “Since value iteration only need one "sweep", does it means value iteration is less 
precise and need take more iteration to find the optimal policy than the policy 
iteration?”



Exercise Question

• “What is the time complexity in policy/value iteration when doing an entire sweep?”


• Think about it in the worst-case, assuming deterministic reward outcomes that 
depend on s, a, s’


• Think about more typical cases, and so what could be an average case 
performance



Convergence Criteria

• “Iterative Policy Evaluation algorithm will loop until the value function of the previous 
state and current state hit a small enough value, is the small enough value a 
predefined threshold, and what is the commonly used threshold in this case?”


• “For asynchronous updates, when do we know when we have v* ? How do we 
determine if the value of v is unchanging since it has converged to v* or because we 
haven't updated some states, and are we forcing the agent to eventually update all 
states to check ?”


• “For policy evaluation part, under the same policy, why is our sequence of value 
functions monotonously improving for every state?”



Policy Improvement

• “Why does the policy improvement theorem guarantee the new policy is strictly 
better than the old policy? Why can't the new policy be just as good as the old 
policy if the optimal policy still has not been found?”


• “In policy improvement video, you said that “policy pi prime is strictly better if the 
value is strictly greater at least one state”, but what about other states? if one of the 
state following pi prime have lower value than pi will pi prime still be strictly better 
than pi?”



Policy Improvement Result
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following the existing policy, ⇡. The value of this way of behaving is

q⇡(s, a)
.
= E[Rt+1 + �v⇡(St+1) | St =s, At =a] (4.6)

=
X

s0,r

p(s0, r |s, a)
h
r + �v⇡(s0)

i
.

The key criterion is whether this is greater than or less than v⇡(s). If it is greater—that
is, if it is better to select a once in s and thereafter follow ⇡ than it would be to follow
⇡ all the time—then one would expect it to be better still to select a every time s is
encountered, and that the new policy would in fact be a better one overall.

That this is true is a special case of a general result called the policy improvement
theorem. Let ⇡ and ⇡0 be any pair of deterministic policies such that, for all s 2 S,

q⇡(s, ⇡0(s)) � v⇡(s). (4.7)

Then the policy ⇡0 must be as good as, or better than, ⇡. That is, it must obtain greater
or equal expected return from all states s 2 S:

v⇡0(s) � v⇡(s). (4.8)

Moreover, if there is strict inequality of (4.7) at any state, then there must be strict
inequality of (4.8) at that state.

The policy improvement theorem applies to the two policies that we considered at the
beginning of this section, an original deterministic policy: ⇡, and a changed policy, ⇡0,
that is identical to ⇡ except that ⇡0(s) = a 6= ⇡(s). For states other than s, (4.7) holds
because the two sides are equal. Thus, if q⇡(s, a) > v⇡(s), then the changed policy is
indeed better than ⇡.

The idea behind the proof of the policy improvement theorem is easy to understand.
Starting from (4.7), we keep expanding the q⇡ side with (4.6) and reapplying (4.7) until
we get v⇡0(s):

v⇡(s)  q⇡(s, ⇡0(s))

= E[Rt+1 + �v⇡(St+1) | St =s, At =⇡0(s)] (by (4.6))

= E⇡0[Rt+1 + �v⇡(St+1) | St =s]

 E⇡0[Rt+1 + �q⇡(St+1, ⇡
0(St+1)) | St =s] (by (4.7))

= E⇡0[Rt+1 + �E[Rt+2 + �v⇡(St+2)|St+1, At+1 =⇡0(St+1)] | St =s]

= E⇡0
⇥
Rt+1 + �Rt+2 + �2v⇡(St+2)

�� St =s
⇤

 E⇡0
⇥
Rt+1 + �Rt+2 + �2Rt+3 + �3v⇡(St+3)

�� St =s
⇤

...

 E⇡0
⇥
Rt+1 + �Rt+2 + �2Rt+3 + �3Rt+4 + · · ·

�� St =s
⇤

= v⇡0(s).

So far we have seen how, given a policy and its value function, we can easily evaluate
a change in the policy at a single state to a particular action. It is a natural extension



Asynchronous DP
• “When we talked about dynamic programming we said that there was a way to do 

the updates in place with a single array. How would that method look when doing the 
updates asynchronously?”


• “What kind of DP algorithms are usually used to perform asynchronous updates? 
How do we make sure such algorithms will update all states to guarantee 
convergence?”


• “When is it more beneficial to perform a synchronous sweep rather than 
asynchronous?”


• “In the case that there are two separate arrays, the order that we update the values 
does not matter. In the one array case, can it be done with random sampling?”



Additional Clarifications

• “is it possible to use DP in non-episodic models?” —> Yes


• “The Monte Carlo method which is quite famous is described to be a optimization of 
averages of the policy taken over a lot of instances. This seems to me a very 
unsophisticated method? So, why is such a method so widely used in RL?”  —> Its 
actually not very widely used


• “How do you make sure the optimal solution found by value iteration is global 
maximum instead of local maximum?” —> we have not talked about having a 
(smooth) optimization surface that could have local maxima. Value iteration is 
guaranteed to converge to the optimal solution (the global max)



Practice Questions
76 Chapter 4: Dynamic Programming

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r  =  !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

Rt = �1

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions possible in each
state, A = {up, down, right, left}, which deterministically cause the corresponding
state transitions, except that actions that would take the agent o↵ the grid in fact leave
the state unchanged. Thus, for instance, p(6, �1 |5, right) = 1, p(7, �1 |7, right) = 1,
and p(10, r |5, right) = 0 for all r 2 R. This is an undiscounted, episodic task. The
reward is �1 on all transitions until the terminal state is reached. The terminal state is
shaded in the figure (although it is shown in two places, it is formally one state). The
expected reward function is thus r(s, a, s0) = �1 for all states s, s0 and actions a. Suppose
the agent follows the equiprobable random policy (all actions equally likely). The left side
of Figure 4.1 shows the sequence of value functions {vk} computed by iterative policy
evaluation. The final estimate is in fact v⇡, which in this case gives for each state the
negation of the expected number of steps from that state until termination.

Exercise 4.1 In Example 4.1, if ⇡ is the equiprobable random policy, what is q⇡(11, down)?
What is q⇡(7, down)? ⇤
Exercise 4.2 In Example 4.1, suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states 12, 13, 14,
and 15, respectively. Assume that the transitions from the original states are unchanged.
What, then, is v⇡(15) for the equiprobable random policy? Now suppose the dynamics of
state 13 are also changed, such that action down from state 13 takes the agent to the new
state 15. What is v⇡(15) for the equiprobable random policy in this case? ⇤
Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for the action-
value function q⇡ and its successive approximation by a sequence of functions q0, q1, q2, . . .?
⇤

4.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better policies.
Suppose we have determined the value function v⇡ for an arbitrary deterministic policy
⇡. For some state s we would like to know whether or not we should change the policy
to deterministically choose an action a 6= ⇡(s). We know how good it is to follow the
current policy from s—that is v⇡(s)—but would it be better or worse to change to the
new policy? One way to answer this question is to consider selecting a in s and thereafter
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Worksheet Q1
Worksheet 4

CMPUT 397

September 30, 2019

1. In iterative policy evaluation, we seek to find the value function for a policy ⇡ by

applying the Bellman equation many times to generate a sequence of value functions

vk that will eventually converge to the true value function v⇡. How can we modify the

update below to generate a sequence of action value functions qk?

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a) [r + �vk(s
0
)]

2. Consider the 4x4 gridworld below, where actions that would take the agent o↵ the grid

leave the state unchanged. The task is episodic with � = 1 and the terminal states are

the shaded blocks. If ⇡ is the equiprobable random policy, what is q⇡(11, down)? What

is q⇡(7, down)?

1


