
C1M3: Worksheets
CMPUT 397

Fall 2020

Reminders: Sept 23, 2019

• Announcement sent out about Discussion Sessions; please fill out the Google Form

• I posted a resource (under Other Resources) with a simple proof for why the optimal
state-value function is unique

A Few Questions from Slido

• I’ll go through some Slido questions

• Ask any additional questions in Zoom chat

Slido: Multiple Optimal Policies

• Multiple Optimal Policies: “If there are multiple optimal action at a state, is the
probability of picking them always evenly distributed or can there be cases where it
is not?”

• Related: In the case of optimal policy, what will happen if the return of two actions
are tie?

• Related: Under what kind of situations can multiple optimal policies exist, if in the
video it was said that you can simply combine policies that have higher values for
a certain state into one policy that is higher than both original in those states?”

Slido: The Role of Gamma

• “In week 1 lectures, it made sense to diminish past rewards when calculating
cumulative rewards, because we don't care about the past. Using the same logic, in
week 2, shouldn't we discount rewards received at present rather than discounting
future rewards (because future rewards should matter more)?”

Slido: Reward specification

• “I'm wondering about the rewarding intermediate steps, in the textbook they say it
shouldn't be done as the agent could find a way to optimize this without achieving
the goal. In the video, it mentioned providing an incentive for long stretch goals.
What is best?”

Slido: Stochastic vs Deterministic
Policies

• “Is a stochastic policy ever optimal? Or for a policy to be optimal, must it be
deterministic?”

• “If it's deterministic, does it mean the policy is optimal?”

• Can you answer these questions for yourself?

Slido: Implementation

• “How are policies implemented in code? Can they be like a python list that gets
updated and changed after each episode so that it gets closer to the optimal
policy?”

• Alternative question: How do you represent conditional distributions in code?

Slido Misc

• “Curious if there have been any real-world applications of inverse-reinforcement
learning.”

• “When we calculate the qstar(s,a), the defination tell us qstar is the maximum of
expect value. But when we really compute it, we use the expect of maximum value.
I think maximum of expect value is equal or less than expect of maximum value. So
how can we avoid this?”

• “I am curious about the different ways the agent can avoid risk-aversive behaviour.
Do descriptions of such behaviour have to be explicitly described and would we let
the agent learn what the different types of risk-aversive behaviour are?”

Practice Question
The Bellman equation (3.10) must hold for each state for the value
function v_\pi shown in Figure 3.2. As an example, show numerically that this equation
holds for the center state, valued at +0.7, with respect to its four neighboring states,
valued at +2.3, +0.4, -0.4, and +0.7. (These numbers are accurate only to one decimal
place.). Harder one: verify the red state.

3.5. Policies and Value Functions 59

These kinds of methods are presented in Chapter 5. Of course, if there are very many
states, then it may not be practical to keep separate averages for each state individually.
Instead, the agent would have to maintain v⇡ and q⇡ as parameterized functions (with
fewer parameters than states) and adjust the parameters to better match the observed
returns. This can also produce accurate estimates, although much depends on the nature
of the parameterized function approximator. These possibilities are discussed in Part II
of the book.

A fundamental property of value functions used throughout reinforcement learning and
dynamic programming is that they satisfy recursive relationships similar to that which
we have already established for the return (3.9). For any policy ⇡ and any state s, the
following consistency condition holds between the value of s and the value of its possible
successor states:

v⇡(s)
.
= E⇡[Gt | St =s]

= E⇡[Rt+1 + �Gt+1 | St =s] (by (3.9))

=
X

a

⇡(a|s)
X

s0

X

r

p(s0, r |s, a)
h
r + �E⇡[Gt+1|St+1 =s0]

i

=
X

a

⇡(a|s)
X

s0,r

p(s0, r |s, a)
h
r + �v⇡(s0)

i
, for all s 2 S, (3.14)

where it is implicit that the actions, a, are taken from the set A(s), that the next states,
s0, are taken from the set S (or from S

+ in the case of an episodic problem), and that
the rewards, r, are taken from the set R. Note also how in the last equation we have
merged the two sums, one over all the values of s0 and the other over all the values of r,
into one sum over all the possible values of both. We use this kind of merged sum often
to simplify formulas. Note how the final expression can be read easily as an expected
value. It is really a sum over all values of the three variables, a, s0, and r. For each triple,
we compute its probability, ⇡(a|s)p(s0, r |s, a), weight the quantity in brackets by that
probability, then sum over all possibilities to get an expected value.

⇡

s

s0

⇡

rp

a

Backup diagram for v⇡

Equation (3.14) is the Bellman equation for v⇡. It expresses
a relationship between the value of a state and the values of
its successor states. Think of looking ahead from a state to its
possible successor states, as suggested by the diagram to the
right. Each open circle represents a state and each solid circle
represents a state–action pair. Starting from state s, the root
node at the top, the agent could take any of some set of actions—
three are shown in the diagram—based on its policy ⇡. From
each of these, the environment could respond with one of several next states, s0 (two are
shown in the figure), along with a reward, r, depending on its dynamics given by the
function p. The Bellman equation (3.14) averages over all the possibilities, weighting each
by its probability of occurring. It states that the value of the start state must equal the
(discounted) value of the expected next state, plus the reward expected along the way.

The value function v⇡ is the unique solution to its Bellman equation. We show in
subsequent chapters how this Bellman equation forms the basis of a number of ways to

3.5. Policies and Value Functions 59

These kinds of methods are presented in Chapter 5. Of course, if there are very many
states, then it may not be practical to keep separate averages for each state individually.
Instead, the agent would have to maintain v⇡ and q⇡ as parameterized functions (with
fewer parameters than states) and adjust the parameters to better match the observed
returns. This can also produce accurate estimates, although much depends on the nature
of the parameterized function approximator. These possibilities are discussed in Part II
of the book.

A fundamental property of value functions used throughout reinforcement learning and
dynamic programming is that they satisfy recursive relationships similar to that which
we have already established for the return (3.9). For any policy ⇡ and any state s, the
following consistency condition holds between the value of s and the value of its possible
successor states:

v⇡(s)
.
= E⇡[Gt | St =s]

= E⇡[Rt+1 + �Gt+1 | St =s] (by (3.9))

=
X

a

⇡(a|s)
X

s0

X

r

p(s0, r |s, a)
h
r + �E⇡[Gt+1|St+1 =s0]

i

=
X

a

⇡(a|s)
X

s0,r

p(s0, r |s, a)
h
r + �v⇡(s0)

i
, for all s 2 S, (3.14)

where it is implicit that the actions, a, are taken from the set A(s), that the next states,
s0, are taken from the set S (or from S

+ in the case of an episodic problem), and that
the rewards, r, are taken from the set R. Note also how in the last equation we have
merged the two sums, one over all the values of s0 and the other over all the values of r,
into one sum over all the possible values of both. We use this kind of merged sum often
to simplify formulas. Note how the final expression can be read easily as an expected
value. It is really a sum over all values of the three variables, a, s0, and r. For each triple,
we compute its probability, ⇡(a|s)p(s0, r |s, a), weight the quantity in brackets by that
probability, then sum over all possibilities to get an expected value.

⇡

s

s0

⇡

rp

a

Backup diagram for v⇡

Equation (3.14) is the Bellman equation for v⇡. It expresses
a relationship between the value of a state and the values of
its successor states. Think of looking ahead from a state to its
possible successor states, as suggested by the diagram to the
right. Each open circle represents a state and each solid circle
represents a state–action pair. Starting from state s, the root
node at the top, the agent could take any of some set of actions—
three are shown in the diagram—based on its policy ⇡. From
each of these, the environment could respond with one of several next states, s0 (two are
shown in the figure), along with a reward, r, depending on its dynamics given by the
function p. The Bellman equation (3.14) averages over all the possibilities, weighting each
by its probability of occurring. It states that the value of the start state must equal the
(discounted) value of the expected next state, plus the reward expected along the way.

The value function v⇡ is the unique solution to its Bellman equation. We show in
subsequent chapters how this Bellman equation forms the basis of a number of ways to

60 Chapter 3: Finite Markov Decision Processes

compute, approximate, and learn v⇡. We call diagrams like that above backup diagrams
because they diagram relationships that form the basis of the update or backup operations
that are at the heart of reinforcement learning methods. These operations transfer
value information back to a state (or a state–action pair) from its successor states (or
state–action pairs). We use backup diagrams throughout the book to provide graphical
summaries of the algorithms we discuss. (Note that, unlike transition graphs, the state
nodes of backup diagrams do not necessarily represent distinct states; for example, a
state might be its own successor.)

Example 3.5: Gridworld Figure 3.2 (left) shows a rectangular gridworld representation
of a simple finite MDP. The cells of the grid correspond to the states of the environment. At
each cell, four actions are possible: north, south, east, and west, which deterministically
cause the agent to move one cell in the respective direction on the grid. Actions that
would take the agent o↵ the grid leave its location unchanged, but also result in a reward
of �1. Other actions result in a reward of 0, except those that move the agent out of the
special states A and B. From state A, all four actions yield a reward of +10 and take the
agent to A0. From state B, all actions yield a reward of +5 and take the agent to B0.

3.7. VALUE FUNCTIONS 63

s,as

a

s'

r

a'

s'

r

(b)(a)

Figure 3.4: Backup diagrams for (a) v⇡ and (b) q⇡.

the states of the environment. At each cell, four actions are possible: north,
south, east, and west, which deterministically cause the agent to move one
cell in the respective direction on the grid. Actions that would take the agent
o� the grid leave its location unchanged, but also result in a reward of �1.
Other actions result in a reward of 0, except those that move the agent out
of the special states A and B. From state A, all four actions yield a reward of
+10 and take the agent to A�. From state B, all actions yield a reward of +5
and take the agent to B�.

Suppose the agent selects all four actions with equal probability in all
states. Figure 3.5b shows the value function, v⇡, for this policy, for the dis-
counted reward case with � = 0.9. This value function was computed by solv-
ing the system of equations (3.10). Notice the negative values near the lower
edge; these are the result of the high probability of hitting the edge of the grid
there under the random policy. State A is the best state to be in under this pol-
icy, but its expected return is less than 10, its immediate reward, because from
A the agent is taken to A�, from which it is likely to run into the edge of the
grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B�, which has a positive value. From B� the
expected penalty (negative reward) for possibly running into an edge is more

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A'

B'+10

+5

Actions

(a) (b)

Figure 3.5: Grid example: (a) exceptional reward dynamics; (b) state-value
function for the equiprobable random policy.

Figure 3.2: Gridworld example: exceptional reward dynamics (left) and state-value function
for the equiprobable random policy (right).

Suppose the agent selects all four actions with equal probability in all states. Figure 3.2
(right) shows the value function, v⇡, for this policy, for the discounted reward case with
� = 0.9. This value function was computed by solving the system of linear equations
(3.14). Notice the negative values near the lower edge; these are the result of the high
probability of hitting the edge of the grid there under the random policy. State A is the
best state to be in under this policy, but its expected return is less than 10, its immediate
reward, because from A the agent is taken to A0, from which it is likely to run into the
edge of the grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B0, which has a positive value. From B0 the expected
penalty (negative reward) for possibly running into an edge is more than compensated
for by the expected gain for possibly stumbling onto A or B.

Exercise 3.14 The Bellman equation (3.14) must hold for each state for the value function
v⇡ shown in Figure 3.2 (right) of Example 3.5. Show numerically that this equation holds
for the center state, valued at +0.7, with respect to its four neighboring states, valued at
+2.3, +0.4, �0.4, and +0.7. (These numbers are accurate only to one decimal place.) ⇤
Exercise 3.15 In the gridworld example, rewards are positive for goals, negative for
running into the edge of the world, and zero the rest of the time. Are the signs of these

Ɣ = 0.9

π = random 
-1 reward on bump

Worksheet Question 1Worksheet C1M3
CMPUT 397

September 21, 2020

1. Express the action-value function q⇡ in terms of v⇡. The formula will also include p and ⇡.

2. When implementing a real world agent, if we knew both the optimal value function v⇤ and
the optimal action-value function q⇤ which would you prefer? Are there other reasons for
favoring one or the other?

3. In this question, you will take a word specification of an MDP, and write the formal terms
and determine the optimal policy. Suppose you have a problem with two actions. The
agent always starts in the same state, s0. From this state, if it takes action 1 it transitions
to a new state s1 and receives reward 10; if it takes action 2 it transitions to a new state s2
and receives reward 5. From s1 if it takes action 1 it receives a reward of 5 and terminates;
if it takes action 2 it receives a reward of 10 and terminates. From s2 if it takes action 1
it receives a reward of 10 and terminates; if it takes action 2 it receives a reward of 5 and
terminates. Assume the agent cares equally about long term reward as about immediate
reward.

(a) Draw the MDP for this problem. Is it an episodic or continuing problem? What is �?

(b) Assume the policy is ⇡(a = 1|si) = 0.3 for all si 2 {s0, s1, s2}. What is ⇡(a = 2|si)? And
what is the value function for this policy? In other words, find v⇡(s) for all three states.

(c) What is the optimal policy in this environment?

1

