Mini-Course 1, Module 3 Value Functions & Bellman Equations **CMPUT 397**

Fall 2020

- Announcement sent out about Discussion Sessions
 - Please fill out the Google Form
- Graded Assessment for Course 1, Module 3 (Graded Quiz) due this Friday
- Any questions about admin?

Reminders: Sept 21, 2019

Review of Mini-Course 1, Module 3

Video 1: Policies

- All about policies. All about how our agents select actions
- Goals:
 - recognize that a policy is a **distribution** over actions for each state
 - policies
 - generate valid policies for a given MDP, or Markov Decision Process.

describe the similarities and differences between stochastic and deterministic

Video 2: Value Functions

- All about value functions, the key data structure of RL
- Goals:
 - learning
 - describe the relationship between value functions and policies
 - create examples of value functions for a given MDP.

describe the roles of the state-value and action-value functions in reinforcement

Video 3: Bellman Equation Derivation

- Bellman equations: the foundation of many RL algorithms
- Goals:
 - derive the Bellman equation for state value functions
 - derive the Bellman equation for action-value functions
 - understand how Bellman equations relate current and future values.

Video 4: Why Bellman Equations?

- Why are Bellman equations so important in RL
- Goals:
 - use the Bellman equations to compute value functions
 - now, to take into account the future

understand how Bellman Equations will allow our algorithms to make updates

Video 5: Optimal Policies

- run
- Goals:
 - define an **optimal** policy
 - state
 - Identify an optimal policy for a given MDP.

• Formalizing our goals: policies that obtains as much reward as possible in the long

• understand how a policy can be at least as good as every other policy in every

Video 6: Using Optimal Value Functions to get Optimal Policies

- A hint of how our agents might use value functions to select actions
- Goals:
 - policies
 - **verify** the optimal value function for given MDPs.

understand the connection between the optimal value function and optimal

On Whiteboard

- Go over expectation form for the Bellman equation
- Revisit a couple of Practice Quiz questions
 - Q5 and Q6 about shifting rewards
 - Q7 about expressing v* in terms of q*

Worksheet Question 1

1. Express the action-value function q_{π} in terms of v_{π} . The formula will also include p and π .

Practice Question

The Bellman equation (3.10) must hold for each state for the value place.). Harder one: verify the red state.

$$\upsilon_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma \upsilon_{\pi}(s')\right], \quad \text{for all } s \in \mathcal{S},$$

function v_\pi shown in Figure 3.2. As an example, show numerically that this equation holds for the center state, valued at +0.7, with respect to its four neighboring states, valued at +2.3, +0.4, -0.4, and +0.7. (These numbers are accurate only to one decimal

3.3	8.8	4.4	5.3	1.5
1.5	3.0	2.3	1.9	0.5
0.1	0.7	0.7	0.4	-0.4
-1.0	-0.4	-0.4	-0.6	-1.2
-1.9	-1.3	-1.2	-1.4	-2.0

X = 0.9 $\pi = random$ -1 reward on bump

