Final Review CMPUT 397 Fall 2020

Comments: Dec 4

- The Final will be of the same format as the Midterm
 - on eClass, with long answer questions
 - 2 hours to complete the exam
- Practice Finals have been released

Reviewing the Entire Course

- We recently reviewed Course 1 and Course 2
- To review Course 3, we primarily ask: how are thing different under function approximation?

How are things the same?

- We were always try to estimate a function: v_{π} or q_{π} or v^* or q^* or π itself
 - $v_{\pi}: \mathcal{S} \to \mathbb{R}, q_{\pi}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ and so on
- estimate of these true functions

• The main difference is in the type of function we learn to try to get an accurate

How are things different?

- Before, we were able to represent this function exactly, with a table (tabular)
 - V is a vector (or array) of size number of states, with entry V(s) estimating $v_{\pi}(s)$
- More generally, we can only approximate these functions
 - e.g., $\hat{v}(s, w) \approx v_{\pi}(s)$ for each s, for parameterized function $\hat{v}(\cdot, w)$
- Tabular is a special case: $V(s) = \hat{v}(s, w)$ under tabular features (x(s) one-hot encoding)
- Can also see it as a generalization, rather than a difference

What is the source of inaccuracy?

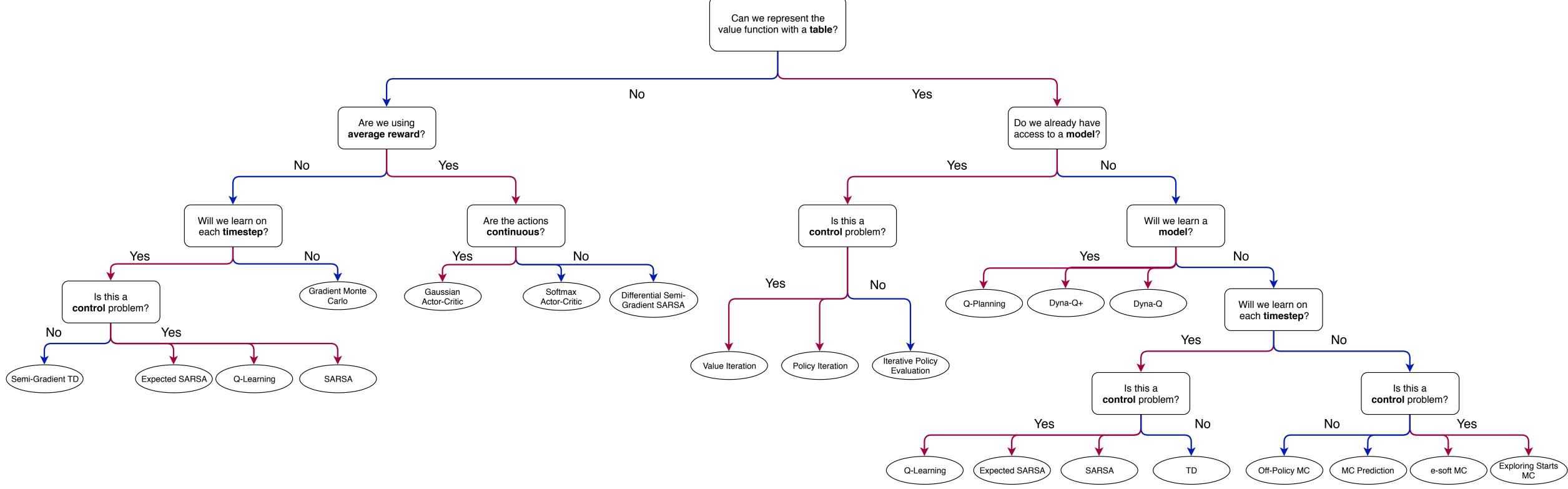
- For tabular estimate V, the inaccuracy is due to insufficient samples and/or updates
 - Question: when and why is V inaccurate in DP? Do we eventually converge to v_{π} ?
 - Question: when and why is V inaccurate in TD? Do we eventually converge to v_{π} ?
- For more general parameterized functions, $\hat{v}(\cdot, w)$, the inaccuracy is due also to the inability to represent v_{π}

Inaccuracy under FA

- All algorithms (tabular and more general parameterized functions) initialize the weights *w* to some value
- $\hat{v}(\cdot, w)$ is inaccurate after 10 updates because it has not seen enough samples
 - just like in the tabular setting
- In the limit of samples and updates, $\hat{v}(\ \cdot\ ,w)$ might still be inaccurate
 - even for w^* , the best weights we could obtain under infinite data and samples, we might have that $\hat{v}(s, w^*) \neq v_{\pi}(s)$

Estimation error and Approximation error

- $\hat{v}(\cdot, w)$ is inaccurate after 10 updates because it has not seen enough samples
 - this is called estimation error (due to insufficient data)
- In the limit of samples and updates, $\hat{v}(\cdot, w)$ might still be inaccurate
 - this is called approximation error (also called the bias of the estimator)



Self-test: How would we use FA for bandits?

- When we did bandits, we estimated Q(a)

- Is this FA better than the tabular one? Why or why not?

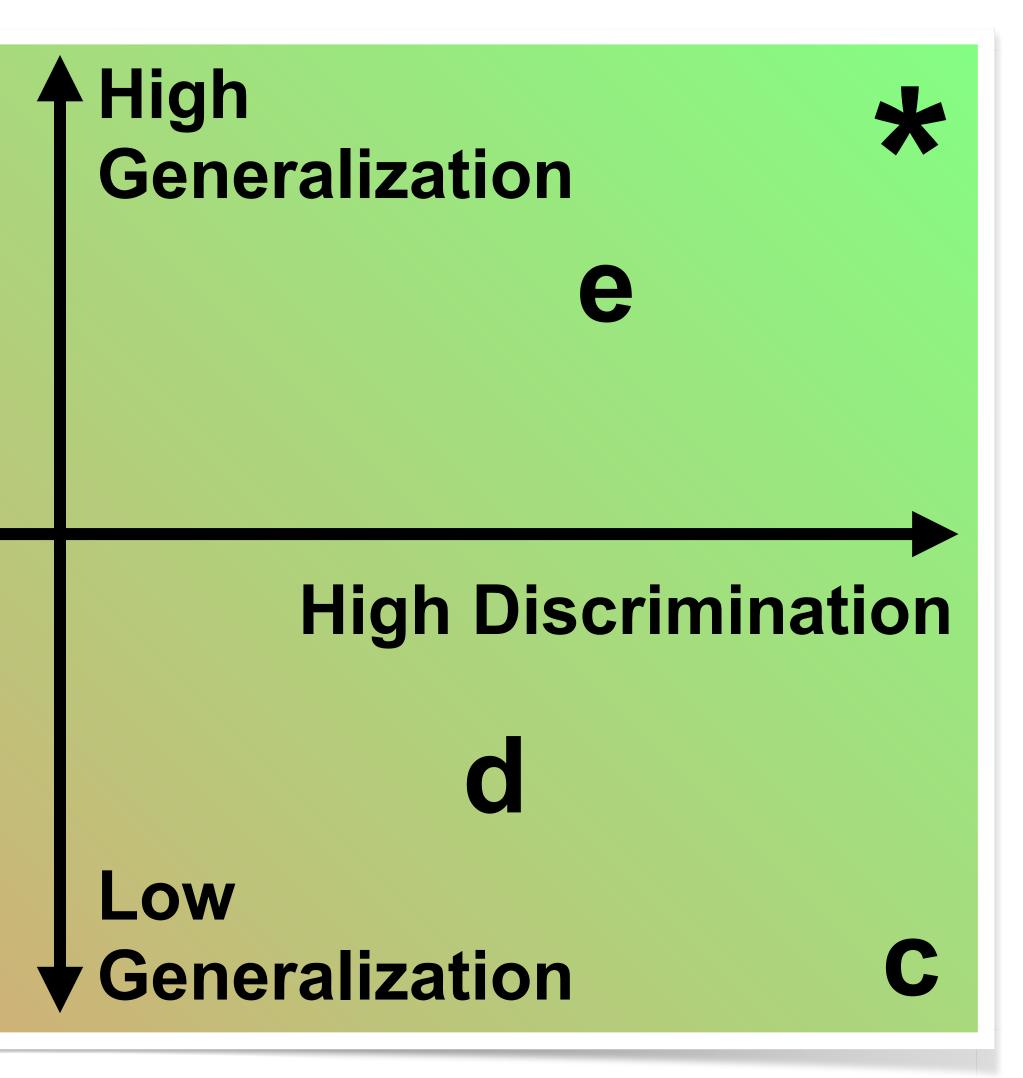
• What might you use for $\hat{q}(a, w)$? First, what is the tabular form, to represent Q(a)?

 Now imagine I tell you there are 1000 actions, and actions 1 - 20 are similar, 21-25 are similar, 25-40 are similar and 40-1000 are similar. What features might you use?

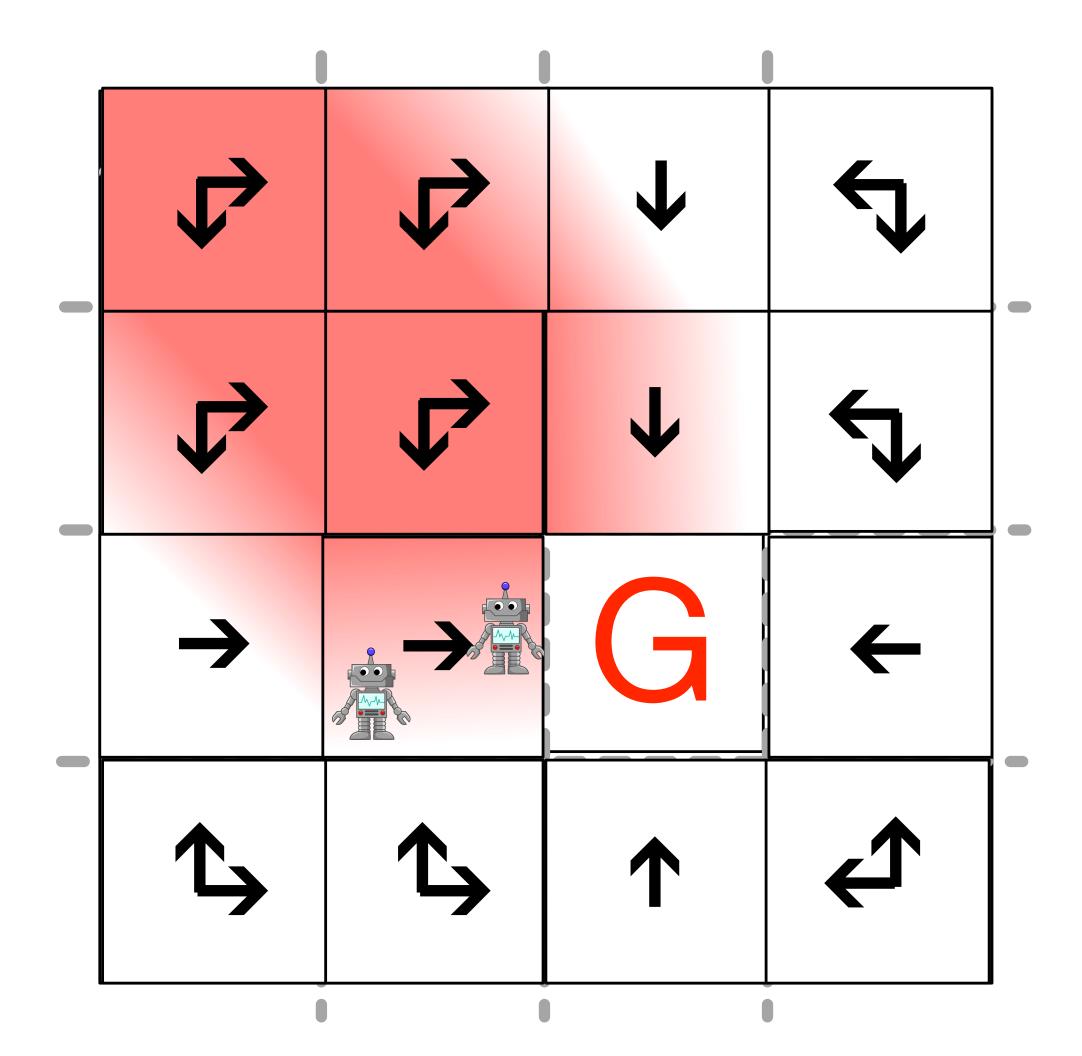
Generalization and Discrimination

a

D



Due to approximation error from FA we need a way to decide trade-offs in error across states



Mean Squared Value Error $\sum \mu(s) [v_{\pi}(s) - \hat{v}(s, \mathbf{w})]^2$ The fraction of time we spend in S

when following policy π

Self-test: How does the FA and the Weighting mu in the VE interact?

a	High Generalization
	е
Low Discrimination	High Discrimination
	d
b	Low Generalization C

Question 1: Imagine we have features that correspond to a. Will vhat be accurate? If no, where will it be more inaccurate and where will it be more accurate?

Question 2: How about e? And how about at the star?

Ţ		1	
Ţ,		Ŷ	
→	\rightarrow	G	←
L	۲		ر
	0	0	

 $\sum \mu(s) [v_{\pi}(s) - \hat{v}(s, \mathbf{w})]^2$

Let's go through some quiz questions

- C3M1: Q5, Q8, Q9, Q10, Q11
- C3M2: Q3, Q5, Q9, Q11
- C3M3: Q1, Q2, Q8
- not include anything about average reward and importance sampling.
- You will not be tested on guest lectures, nor on content in Course 4

• Final comment: The final will only include concepts from Course 1, 2 and 3, and will

