Course 3, Module 3
Control with Approximation

CMPUT 397
Fall 2020

Announcements

e Capstone project is due Monday at Midnight (deadline on last day of classes)

e No class on Monday! Instead, we will review the Practice Final on Wednesday or
Thursday

e |’ll release a practice final this week

e Some course review this Friday, please come prepared to ask questions

Review of Course 3, Module 3
How to do control (learn a good policy)
with function approximation

Input state Semi-gradient

(might not be)) A
Markov State) SEIEETE G(St, Ar, w)

and action learning approximate
value: guess at

On(St,At)

Video 1: Episodic Sarsa with
Function Approximation

e We know how to do function approximation with TD; how about using that to learn
action-values and a policy. On-policy TD control with approximation

e (Goals:

e Understand how to construct action-dependent features for approximate action-
values >> stacking

e and explain how to use Sarsa in episodic tasks with function approximation

Video 2: Episodic Sarsa in Mountain Car

e Can we do a large number of states with Semi-gradient Sarsa? How about an
infinite number of state? Yep. We do a classic control task: Mountain Car

e (Goals:

e gain experience analyzing the performance of an approximate TD control method

The Mountain Car environment

—> Rstep =—1

y = 1.0

State: Car position
Car velocity

Actions: Accelerate right
Accelerate left
T Coast (no acceleration)

Learning curves

1000

Mountain Car “°f
Steps per episode

log scale
averaged over 100 runs 200 [

100 [

0 560
Episode

From Slido: “In Episodic Sarsa in the Mountain car environment, is step size with 0.5/8 the best step size?”

Learned values

Episode 9000

—max Q(s,a, W) 120 \ /

D

0 o
O
@

Q

RPA
OFN / f/.On

Be a good RL Scientist!

Notice, even for this tiny problem we tried different alpha. We did many runs. We
studied learning speed; final performance; even the value function

e we have a good idea of how Sarsa works on this problem. It's robust and stable and
pretty easy to tune it's parameters

We want to do such careful analysis every time! Especially when comparing algorithms!
ML and Al are growing! Lots of people want jobs

One way to stand out, is to become a really careful empiricist! A master of good
experiments. It's a rare skill

Video 3: Expected Sarsa with
Function Approximation

e |f we can do Semi-gradient Sarsa, then its just small changes to make Semi-
gradient Expected Sarsa and Semi-gradient Q-learning!

e (Goals:
e Explain the update for Expected Sarsa with function approximation

e And explain the update for Q-learning with function approximation

Self-test

e Slido: “How do you turn the expected sarsa algorithm to an update of Q-Learning?”

Episodic Semi-gradient Sarsa for Estimating q =~ q.

Input: a differentiable action-value function parameterization §: 8 x A x R - R
Algorithm parameters: step size a > 0, small € > 0
Initialize value-function weights w € R¢ arbitrarily (e.g., w = 0)

Loop for each episode:
S, A < initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S” is terminal:
W < W + « [R —q(S, A, W)] Vq(S, A, w)
Go to next episode
Choose A’ as a function of ¢(S’, -, w) (e.g., e-greedy)
W < W + oz[R + vq(S’, A", w) — q¢(S, A, W)]VQ(S, A, w)
S+ 5
A+ A

Video 4: Exploration under
Function Approximation

 Balancing exploration and exploitation in RL is hard, even in the tabular case.
Recall that some of the ideas from the Bandit problem could not be easily translated
into the tabular RL problem. It is even harder in function approximation. Counting
state visits”? How do we do optimistic initial values with a tile coder or a NN?

e (Goals:

 Describe how optimistic initial values and epsilon-greedy can be used with
function approximation.

Self-test

e How do you use epsilon-greedy with semi-gradient Q-learning? How is the
pseudocode different from tabular Q-learning?

e For tabular Q-learning, we said using epsilon-greedy ensures you visit every state. Is
that true for semi-gradient Q-learning?

e For tabular Q-learning, do optimistic initial values ensure we visit every state at least
once? How about for semi-gradient Q-learning?

How Optimism Interacts with Generalization

Single feature Tile coding Neural network

Video 5: Average Reward: A New Way of
Formulating Control Problems

* |n some situations discounting might not be the best choice. For example, In
continuing tasks with function approximation. Let's consider another way to

formulate the RL task: average reward!

e (Goals:

e Describe the average reward setting

e Explain when average reward optimal policies are different from policies obtained
under discounting

e And understand differential value functions.

Where are we?

TD Control with Approximation

Can we represent the
value function with a table?

|
[")

Are we using Do we already have
average reward? access to a model?

No l Yes Yes l No
| | I !

Will we learn on Are the actions Is this a Will we learn a
each timestep? continuous? control problem? model?
Yes l No Yes l No Yes l No
{ } Yes No { ¢ £ l
. Gradient Mont i . . .
Is this a lefer_entlal Semi- . .
control problem? Gradient SARSA Q-Planning Will we learn on
each timestep?
No l Yes
Yes l No
ree oy v)
Semi-Gradient TD Expected SARSA @
Is this a Is this a
control problem? control problem?

Ye 0

S l No N l Yes

Exploring Starts
MC

TD Control with Approximation

rC e

No

-

&

Will we learn on
each timestep?

_/

No

\

Are we using
average reward?

~

J

.

Is this a
control problem?

J

Semi-Gradient TD

Yes

Expected SARSA @

Gradient Monte
Carlo

Yes

4 N
Are the actions
continuous?
_ Y,
Yes No

Gaussian
Actor-Critic

Softmax Differential Semi-
Actor-Critic Gradient SARSA

TD Control with Approximation

Yes

@cted S@ QLearniD <SARSA>

Slido Questions: FA vs tabular

e Why does updating the state of one not affect the state of others in the tabular
case”?

e For the tabular, since it updates each value function for each state, when over many
steps and episodes, does it has a high variance due to accumulation.

Slido: Implementations

e When implementing function approximation for action values in reality, do we care

about the space inefficiency due to stacking or is the performance gain minimal
after fixing this?

e For a given time t, is the estimate of the average reward, R_t bar, always updated
the same way (R_t+1 bar = R_t bar + beta*delta)? Or are there other methods of
calculating R_t bar that converge to r(pi) differently? (worksheet question)

e do we always optimistically initialize values”?

e Or maybe this means: Should we always optimistically initialize values”?

Slido: Differential Return

e How is differential return calculated? In the example, the average reward of going
left is 0.2, then shouldn't the differential return be 0 when going left? Since applying
average reward to all time steps equals the sum of reward in all time steps.

e When calculating returns for average reward, how does subtracting the average
reward from every return not give us a return of 0? | am struggling to see how we

get a different value when H goes to infinity.

The Average Reward objective

h
() 3 iy Y AR S gk, el
g R

) = 1/5=0.2 () = 2/5 = 0.4

Returns for Average Reward

G=1-02+ G=0-02+
0—0.2 + 0—0.2 +
0-0.2 + 0—0.2 +
0—-0.2 + 0—02 +
0-02 + 2-02 +

_: H— o +2 0.4
= 0.4 14

Returns for Average Reward

Q
|

oo oo
|

D N NG NG N N
++++ +

© 00 OS2

N
— O

Slido: Problem Specification

Is there any reference about how to design a reward function in some virtue
environment setting? For example, we know in Go the reward could be 1 for win, -1 for
loss, O for tie. How about a universal or general environment?

With the discounted reward, we can adjust the gamma value to determine how much
we care about the future. Does it mean that with the implication of average reward, we
will be losing this ability?

Since the average reward and differential return method avoids one of the key issues
with discounting, is there any reason that we would want to use discounted rewards
over differential rewards?

Can the average reward method be applied to episodic tasks?

A paragraph from the book

e “This example and the more general argument in the box show that if we optimized
discounted value over the on-policy distribution, then the effect would be identical
to optimizing undiscounted average reward; the actual value of would have no
effect. This strongly suggests that discounting has no role to play in the definition of
the control problem with function approximation. One can nevertheless go ahead
and use discounting in solution methods. The discounting parameter changes from
a problem parameter to a solution method parameter! Unfortunately, discounting
algorithms with function approximation do not optimize discounted value over the
on-policy distribution, and thus are not guaranteed to optimize average reward. ”

Slido: Issues Estimating Rbar

e Differential semi-gradient Sarsa for estimating g = q_* estimates the average reward.
Since the estimate is not necessarily equal to the true average reward, can't the
differential return diverge to positive or negative infinity? If so, how do we avoid

this?

e Related: What will happened if average reward term significantly larger or smaller
than the True value?

Slido: Advanced/Misc

e How is discounted return suffer from exponentially large variance when using a large
discount factor?

e Couldn't we do some "dummy" training to initialize an NN with optimistic values?
For instance, run through a sufficient number of episodes with high step sizes and
an artificially high reward??

e Average reward method comes from the idea of using Cesaro sum to calculate
divergent series. Can we develop other methods from different summations of

divergent series?

