Midterm Review CMPUT 397 Fall 2020

Planning (Ch8)

Course Roadmap

Monte Carlo learning (Ch5) TD learning (Ch6)

Planning (Ch8)

Course Roadmap

Simple decision making problem with 1 state

Bandits

Bandits

- Know the exploration-exploitation tradeoff!
 - i.e. Why shouldn't you always be greedy? Why not constantly explore?
- Know about incremental averaging (and why we do it!)
 - NewEstimate

 OldEstimate + StepSize[Target-OldEstimate]

MDPs, returns, value functions (Ch3)

Monte Carlo learning (Ch5) TD learning (Ch6)

Planning (Ch8)

Course Roadmap

Decision making problems with many states \bullet

- Agent is concerned with **returns**:

$$G_t \doteq R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots + \gamma^{k-1} R_{t+k} + \dots$$

• Specifically, the agent estimates the **expected return**, which depends on the agent's policy and the environment dynamics

• Sequential decision making: must take many actions in a row to maximize reward

- Value-based methods address this by learning value functions
- Value functions:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi} \left[G_t \mid S_t = s \right] \quad \text{```}$$
$$q_{\pi}(s, a) \doteq \mathbb{E}_{\pi} \left[G_t \mid S_t = s, A_t \right]$$

• Value-based methods address this by learning to predict the expected return, i.e.

How good is this state"

= a "How good is taking **this action** in this state"

- i.e. for all states:

$$\mathbf{v}_{\pi}(s) \doteq \mathbb{E}_{\pi} \left[\mathbf{G}_{t} \mid \mathbf{S}_{t} = s \right]$$
$$= \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma \mathbf{v}_{\pi}(s') \right]$$

• Bellman Equations: write the value of a state in terms of the value of another state

- Policy improvement
 - the new policy will be at least as "good" as the previous one
- respect to its **own** value function, and is an optimal policy π^*
- Optimal value functions denoted v*(s) and q*(s,a)

• If you derive a greedy policy with respect to the action-values of another policy,

• If the new policy did not change from the previous policy, the policy is greedy with

Self-test: Connections to Course 2

- - how is it relevant for Sarsa?
 - how is it relevant for Q-learning?

• We only talked about the policy improvement result in Course 1, when we did DP

• How is policy improvement relevant for the sample-based methods in Course 2?

Bandits (Ch2) \longrightarrow MDPs, returns, value functions (Ch3) \longrightarrow Dynamic programming (Ch4)

Planning (Ch8)

Course Roadmap

Monte Carlo learning (Ch5) TD learning (Ch6)

Dynamic Programming: **Iterative Policy Evaluation**

- Computes an approximate value function V(s) $\approx v_{\pi}(s)$
- current estimates in the value function

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s'} \sum_{r} p(s', r \mid s, a) \left[r + \gamma v_{k}(s') \right]$$

• Sweeps across all states and actions, and evaluates the Bellman equation using the

Dynamic Programming

- Introduces the idea of **bootstrapping** basing the update to a state's value on the agent's current value estimates of successor states
- Requires knowledge of the environment dynamics p(s',r | s,a)
 - this is a model-based method since it assume access to the environment model p

Dynamic Programming: Value Iteration

Uses Bellman equation to iterate towards v^* (and so towards π^*)

•
$$v_{k+1}(s) \leftarrow \max_{a} \sum_{s',r} p(s',r \mid s,a)[r + \gamma v_k(s')]$$

Contrast with policy evaluation update

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a \mid s) \sum_{s',r} p(s',r \mid s,a) [r + \gamma v_k(s) \mid s',r]$$

- IPE)
- Value Iteration greedifies, after only one sweep of evaluating with the current greedy policy

(s')

Policy iteration uses greedy policy, and fully evaluates the values for that policy (multiple sweeps to do

Planning (Ch8)

Course Roadmap

Monte Carlo Learning

- Policy Evaluation: estimates the value function V(s) $\approx v_{\pi}(s)$
- Sample returns from states by following policy π , then average those returns for each state

Monte Carlo Learning

- Doesn't need a model of the environment

• We only used it in episodic problems: learning only occurs after each episode

Monte Carlo Self-test

following incremental update rule, for a constant stepsize $\alpha > 0$

•
$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$

and those with the incremental update rule?

• Given a We talked about two versions of Monte Carlo for prediction. The first uses a sample average (sample mean) of returns from a state s. The second uses the

• What is the primary difference between the values learned with the sample average

Bandits (Ch2)

Monte Carlo learning (Ch5) TD learning (Ch6)

Planning (Ch8)

Course Roadmap

Previous experience:

Previous experience:

New experience:

New experience:

TD Learning

- Estimates value function $V(s) \approx v_{\pi}(s)$
 - control
- Combines ideas from Monte Carlo and Dynamic Programming uses a mix of sampled information and bootstrapping off of current estimates
- Can learn *online*, without having to wait for the end of an episode

• TD is for Policy Evaluation (prediction), Sarsa and Q-learning are TD variants for

TD Learning Algorithms

One-step TD (or TD(0)):

One-step Sarsa (or Sarsa(0)): $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [\hat{G}_t - Q(S_t, A_t)]$

 $V(S_t) \leftarrow V(S_t) + \alpha |\hat{G}_t - V(S_t)|$

 $\widehat{G}_t = R_{t+1} + \gamma V(S_{t+1})$

 $\hat{G}_t = R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$

Self-test: What makes Sarsa a control algorithm?

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$ Initialize Q(s, a), for all $s \in S^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SChoose A from S using policy derived from Q (e.g., ε -greedy) Loop for each step of episode: Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ε -greedy) $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A) \right]$ $S \leftarrow S'; A \leftarrow A';$ until S is terminal

Can you get a policy evaluation variant of Sarsa? (i.e., TD that estimates action-values) We would call this Sarsa for Prediction. By default, Sarsa means Sarsa for Control

TD Self-test

- What is the difference between **online** and **offline** updating?
- What is the difference between Sarsa, Q-learning, and Expected Sarsa?

Self-test: Variance in Updates

- We talked a bit about the variance in updates
- Why does variance in the update matter?

Which do you think will have a lower variance update: MC or TD, for prediction?

• Which do you think will have a lower variance update: Sarsa or Expected Sarsa?

Planning (Ch8)

Course Roadmap

Monte Carlo learning (Ch5) TD learning (Ch6)

Planning, Learning and Acting

- policy

• Planning: a process which takes a **model** as input and produces or improves a

• Dyna uses a model to **simulate experience** and improve its value estimates, where greedifying with respect to these value estimates produces an improved **policy**

Dyna Self-test

- What is a model? (where model has a technical definition for RL and this course)
 - A procedure that produces a possible next state and reward, for a given state and action
- What is the difference between **simulated** and **real** experience?
- Explain the exploration / exploitation trade-off in model-based RL. How does it differ from the trade-off in the model-free setting?
- Describe at a high level how the Dyna-Q algorithm works?

Course Roadmap

Comments about Test Answers

- reasons, rather than just writing down an answer (but still be concise)
- will mark the wrong ones
- (but its wrong) then I might give partial marks for that
- One common problem: answering a different question than is asked
 - after answering, re-read the question and check if you answered it

• The goal is to see your thought process. Try to explain your answer clearly and give

Don't vomit on the page: if you write many answers, and some of them are wrong, I

• I don't give partial marks for wrong answers, but if you demonstrate understanding

• If you think: "this is a simple question, she must have meant this other more complicated thing", you are probably wrong. I probably meant the simple thing.