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Bandits

e Simple decision making problem with 1 state

En-o*m




Bandits

e Know the exploration-exploitation tradeoftf!
e |.e. Why shouldn’t you always be greedy? Why not constantly explore?
e Know about incremental averaging (and why we do it!)

e NewEstimate < OldEstimate+StepSize[Target-OldEstimate]
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MDPs, Returns, Value Functions

e Decision making problems with many states




MDPs, Returns, Value Functions

e Sequential decision making: must take many actions in a row to maximize reward

e Agent is concerned with returns:

G, =R, +/R »+7' R 3+ .. 47 'R+ ...

e Specifically, the agent estimates the expected return, which depends on the
agent’s policy and the environment dynamics



MDPs, Returns, Value Functions

* \alue-based methods address this by learning to predict the expected return, i.e.
learning value functions

e \/alue functions:

14 (S) = [ [Gt | St — S] “How good is this state”

q (s,a) = [ [Gt | St — S,At — a] “How good is taking this action in this state”



MDPs, Returns, Value Functions

e Bellman Equations: write the value of a state in terms of the value of another state

o |.e. for all states:

v (s) =[E_ [Gt | S, = S]

— Zﬂ'(dlS)z Zp(s’,rls,a)[l"F}’Vﬂ;(S,)]




MDPs, Returns, Value Functions

e Policy improvement

* |f you derive a greedy policy with respect to the action-values of another policy,
the new policy will be at least as “good” as the previous one

e |f the new policy did not change from the previous policy, the policy is greedy with
respect to its own value function, and is an optimal policy T*

e Optimal value functions denoted v*(s) and g*(s,a)



Self-test: Connections to Course 2

e We only talked about the policy improvement result in Course 1, when we did DP
e How is policy improvement relevant for the sample-based methods in Course 27
e how is it relevant for Sarsa?

e how is it relevant for Q-learning?
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Dynamic Programming:
Iterative Policy Evaluation

e Computes an approximate value function V(s) = vr(S)

e Sweeps across all states and actions, and evaluates the Bellman equation using the
current estimates in the value function

Vi 1(8) < Z nw(als) Z Zp(s’,r |s,a) [r + yvk(s’)]



Dynamic Programming

* |ntroduces the idea of bootstrapping - basing the update to a state’s value on the
agent's current value estimates of successor states

* Requires knowledge of the environment dynamics p(s',r | s,a)

e this is a model-based method since it assume access to the environment model p



Dynamic Programming:
Value lteration

Uses Bellman equation to iterate towards v* (and so towards 7*)

Vip1(s) < max Z p(s’,rls,a)lr +yv(s")]

s'.r

Contrast with policy evaluation update

Vk+1(S) « Zﬂ(a‘S)zp(S,,VlS, Cl)[r+}/Vk(S,)]

Policy iteration uses greedy policy, and fully evaluates the values for that policy (multiple sweeps to do
IPE)

Value Iteration greedifies, after only one sweep of evaluating with the current greedy policy
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Monte Carlo Learning

e Policy Evaluation: estimates the value function V(s) = vn(s)

e Sample returns from states by following policy mt, then average those returns for
each state



Monte Carlo Learning

e Doesn’t need a model of the environment

e We only used it in episodic problems: learning only occurs after each episode



Monte Carlo Self-test

e Given a We talked about two versions of Monte Carlo for prediction. The first uses a
sample average (sample mean) of returns from a state s. The second uses the

following incremental update rule, for a constant stepsize a > 0

o V(S) « V(S, + a(G, — V(S)))

e What is the primary difference between the values learned with the sample average
and those with the incremental update rule?
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1D Learning

e Estimates value function V(s) = vn(S)

e TD is for Policy Evaluation (prediction), Sarsa and Q-learning are TD variants for
control

e Combines ideas from Monte Carlo and Dynamic Programming - uses a mix of
sampled information and bootstrapping off of current estimates

e Can learn online, without having to wait for the end of an episode



TD Learning Algorithms

One-step TD (or TD(0)):
V(Se) <« V(Se) + a[Gt — V(St)]

Ge = Rey1 + ¥V (Se41)

One-step Sarsa (or Sarsa(0)):

Q(St, Ar) <« Q(S¢, Ap) + “[ﬁt — Q(St:At)]

Ge = Rey1 +vQ(Ses1,Ars1)



Self-test: What makes
Sarsa a control algorithm?

Sarsa (on-policy TD control) for estimating ) ~ ¢,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from @) (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S using policy derived from @ (e.g., e-greedy)
Q(S, 4) + Q(S, 4) + a[R+1Q(S", A) — Q(S. A)
S+ S A+ A

until S 1s terminal

Can you get a policy evaluation variant of Sarsa? (i.e., TD that estimates action-values)
We would call this Sarsa for Prediction. By default, Sarsa means Sarsa for Control



TD Self-test

 What is the difference between online and offline updating?

e What is the difference between Sarsa, Q-learning, and Expected Sarsa?



Self-test: Variance in Updates

We talked a bit about the variance in updates
Why does variance in the update matter?
Which do you think will have a lower variance update: MC or TD, for prediction?

Which do you think will have a lower variance update: Sarsa or Expected Sarsa”?
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Planning, Learning and Acting

 Planning: a process which takes a model as input and produces or improves a
policy

* Dyna uses a model to simulate experience and improve its value estimates, where
greedifying with respect to these value estimates produces an improved policy



Dyna Self-test

What is a model? (where model has a technical definition for RL and this course)
* A procedure that produces a possible next state and reward, for a given state and action
What is the difference between simulated and real experience?

Explain the exploration / exploitation trade-off in model-based RL. How does it differ from
the trade-off in the model-free setting?

Describe at a high level how the Dyna-Q algorithm works?
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Comments about Test Answers

The goal is to see your thought process. Try to explain your answer clearly and give
reasons, rather than just writing down an answer (but still be concise)

Don’t vomit on the page: if you write many answers, and some of them are wrong, |
will mark the wrong ones

| don’t give partial marks for wrong answers, but if you demonstrate understanding
(but its wrong) then | might give partial marks for that

One common problem: answering a different question than is asked
e after answering, re-read the question and check if you answered it

e |f you think: “this is a simple question, she must have meant this other more
complicated thing”, you are probably wrong. | probably meant the simple thing.



