
Midterm Review
CMPUT 397

Fall 2020

Course Roadmap

Bandits	(Ch2) MDPs,	returns,	value	functions	(Ch3) Dynamic	programming	(Ch4)

Monte	Carlo	learning	(Ch5) TD	learning	(Ch6)

Planning	(Ch8)

Course Roadmap

Bandits	(Ch2) MDPs,	returns,	value	functions	(Ch3) Dynamic	programming	(Ch4)

Monte	Carlo	learning	(Ch5) TD	learning	(Ch6)

Planning	(Ch8)

Bandits

• Simple decision making problem with 1 state

Bandits

• Know the exploration-exploitation tradeoff!

• i.e. Why shouldn’t you always be greedy? Why not constantly explore?

• Know about incremental averaging (and why we do it!)

• NewEstimate←OldEstimate+StepSize[Target-OldEstimate]

Course Roadmap

Bandits	(Ch2) MDPs,	returns,	value	functions	(Ch3) Dynamic	programming	(Ch4)

Monte	Carlo	learning	(Ch5) TD	learning	(Ch6)

Planning	(Ch8)

MDPs, Returns, Value Functions

• Decision making problems with many states

MDPs, Returns, Value Functions

• Sequential decision making: must take many actions in a row to maximize reward

• Agent is concerned with returns:

• Specifically, the agent estimates the expected return, which depends on the
agent’s policy and the environment dynamics

Gt ≐ Rt+1+γRt+2+γ2Rt+3 + …+γk−1Rt+k + …Gt ≐ Rt+1+γRt+2+γ2Rt+3 + …+γk−1Rt+k + …

MDPs, Returns, Value Functions

• Value-based methods address this by learning to predict the expected return, i.e.
learning value functions

• Value functions:

vπ(s) ≐ 𝔼π [Gt ∣ St = s] “How good is this state”

qπ(s, a) ≐ 𝔼π [Gt ∣ St = s, At = a] “How good is taking this action in this state”

MDPs, Returns, Value Functions

• Bellman Equations: write the value of a state in terms of the value of another state

• i.e. for all states:

= ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvπ(s′)]

vπ(s) ≐ 𝔼π [Gt ∣ St = s]

MDPs, Returns, Value Functions

• Policy improvement

• If you derive a greedy policy with respect to the action-values of another policy,
the new policy will be at least as “good” as the previous one

• If the new policy did not change from the previous policy, the policy is greedy with
respect to its own value function, and is an optimal policy π*

• Optimal value functions denoted v*(s) and q*(s,a)

Self-test: Connections to Course 2

• We only talked about the policy improvement result in Course 1, when we did DP

• How is policy improvement relevant for the sample-based methods in Course 2?

• how is it relevant for Sarsa?

• how is it relevant for Q-learning?

Course Roadmap

Bandits	(Ch2) MDPs,	returns,	value	functions	(Ch3) Dynamic	programming	(Ch4)

Monte	Carlo	learning	(Ch5) TD	learning	(Ch6)

Planning	(Ch8)

Dynamic Programming:
Iterative Policy Evaluation

• Computes an approximate value function V(s) ≈ vπ(s)

• Sweeps across all states and actions, and evaluates the Bellman equation using the
current estimates in the value function

vk+1(s) ← ∑
a

π(a |s)∑
s′

∑
r

p(s′ , r |s, a)[r + γvk(s′)]

Dynamic Programming

• Introduces the idea of bootstrapping - basing the update to a state’s value on the
agent's current value estimates of successor states

• Requires knowledge of the environment dynamics p(s',r | s,a)

• this is a model-based method since it assume access to the environment model p

Dynamic Programming:
Value Iteration

• Uses Bellman equation to iterate towards (and so towards)

•

• Contrast with policy evaluation update

•

• Policy iteration uses greedy policy, and fully evaluates the values for that policy (multiple sweeps to do
IPE)

• Value Iteration greedifies, after only one sweep of evaluating with the current greedy policy

v* π*

vk+1(s) ← max
a ∑

s′ ,r

p(s′ , r |s, a)[r + γvk(s′)]

vk+1(s) ← ∑
a

π(a |s)∑
s′ ,r

p(s′ , r |s, a)[r + γvk(s′)]

Course Roadmap

Bandits	(Ch2) MDPs,	returns,	value	functions	(Ch3) Dynamic	programming	(Ch4)

Monte	Carlo	learning	(Ch5) TD	learning	(Ch6)

Planning	(Ch8)

Monte Carlo Learning

• Policy Evaluation: estimates the value function V(s) ≈ vπ(s)

• Sample returns from states by following policy π, then average those returns for
each state

Monte Carlo Learning

• Doesn’t need a model of the environment

• We only used it in episodic problems: learning only occurs after each episode

Monte Carlo Self-test
• Given a We talked about two versions of Monte Carlo for prediction. The first uses a

sample average (sample mean) of returns from a state s. The second uses the
following incremental update rule, for a constant stepsize

•

• What is the primary difference between the values learned with the sample average
and those with the incremental update rule?

α > 0

V(St) ← V(St) + α(Gt − V(St))

Course Roadmap

Bandits	(Ch2) MDPs,	returns,	value	functions	(Ch3) Dynamic	programming	(Ch4)

Monte	Carlo	learning	(Ch5) TD	learning	(Ch6)

Planning	(Ch8)

Temporal Difference Learning

Previous	expe
rience:

Temporal Difference Learning

Previous	expe
rience:

Temporal Difference Learning

New	experien
ce:

Temporal Difference Learning

New	experien
ce:

TD Learning

• Estimates value function V(s) ≈ vπ(s)

• TD is for Policy Evaluation (prediction), Sarsa and Q-learning are TD variants for
control

• Combines ideas from Monte Carlo and Dynamic Programming - uses a mix of
sampled information and bootstrapping off of current estimates

• Can learn online, without having to wait for the end of an episode

TD Learning Algorithms

One-step	TD	(or	TD(0)):
! "# ← ! "# + & '(# − ! "#

'(# = +#,- + .! "#,-

One-step	Sarsa	(or	Sarsa(0)):
/ "#, 1# ← / "#, 1# + & '(# − / "#, 1#

'(# = +#,- + ./ "#,-, 1#,-

Self-test: What makes
Sarsa a control algorithm?130 Chapter 6: Temporal-Di↵erence Learning

Sarsa (on-policy TD control) for estimating Q ⇡ q⇤

Algorithm parameters: step size ↵ 2 (0, 1], small " > 0
Initialize Q(s, a), for all s 2 S

+, a 2 A(s), arbitrarily except that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., "-greedy)
Loop for each step of episode:

Take action A, observe R, S0

Choose A0 from S0 using policy derived from Q (e.g., "-greedy)
Q(S, A) Q(S, A) + ↵

⇥
R + �Q(S0, A0)�Q(S, A)

⇤

S S0; A A0;
until S is terminal

Example 6.5: Windy Gridworld Shown inset below is a standard gridworld, with
start and goal states, but with one di↵erence: there is a crosswind running upward
through the middle of the grid. The actions are the standard four—up, down, right,
and left—but in the middle region the resultant next states are shifted upward by a
“wind,” the strength of which varies from column to column. The strength of the wind

0 1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150
170

Time steps

S G

0 0 0 01 1 1 12 2

Actions

Ep
is
od

es

is given below each column, in num-
ber of cells shifted upward. For ex-
ample, if you are one cell to the
right of the goal, then the action
left takes you to the cell just above
the goal. This is an undiscounted
episodic task, with constant rewards
of �1 until the goal state is reached.

The graph to the right shows the
results of applying "-greedy Sarsa to
this task, with " = 0.1, ↵ = 0.5,
and the initial values Q(s, a) = 0
for all s, a. The increasing slope of
the graph shows that the goal was
reached more quickly over time. By
8000 time steps, the greedy policy was long since optimal (a trajectory from it is shown
inset); continued "-greedy exploration kept the average episode length at about 17 steps,
two more than the minimum of 15. Note that Monte Carlo methods cannot easily be used
here because termination is not guaranteed for all policies. If a policy was ever found
that caused the agent to stay in the same state, then the next episode would never end.
Online learning methods such as Sarsa do not have this problem because they quickly
learn during the episode that such policies are poor, and switch to something else.

Exercise 6.9: Windy Gridworld with King’s Moves (programming) Re-solve the windy
gridworld assuming eight possible actions, including the diagonal moves, rather than the

Can you get a policy evaluation variant of Sarsa? (i.e., TD that estimates action-values)
We would call this Sarsa for Prediction. By default, Sarsa means Sarsa for Control

TD Self-test

• What is the difference between online and offline updating?

• What is the difference between Sarsa, Q-learning, and Expected Sarsa?

Self-test: Variance in Updates

• We talked a bit about the variance in updates

• Why does variance in the update matter?

• Which do you think will have a lower variance update: MC or TD, for prediction?

• Which do you think will have a lower variance update: Sarsa or Expected Sarsa?

Course Roadmap

Bandits	(Ch2) MDPs,	returns,	value	functions	(Ch3) Dynamic	programming	(Ch4)

Monte	Carlo	learning	(Ch5) TD	learning	(Ch6)

Planning	(Ch8)

Planning, Learning and Acting

• Planning: a process which takes a model as input and produces or improves a
policy

• Dyna uses a model to simulate experience and improve its value estimates, where
greedifying with respect to these value estimates produces an improved policy

•

Dyna Self-test

• What is a model? (where model has a technical definition for RL and this course)

• A procedure that produces a possible next state and reward, for a given state and action

• What is the difference between simulated and real experience?

• Explain the exploration / exploitation trade-off in model-based RL. How does it differ from
the trade-off in the model-free setting?

• Describe at a high level how the Dyna-Q algorithm works?

Course Roadmap

Bandits	(C2) MDPs,	returns,	value	functions	(C3) Dynamic	programming	(C4)

Monte	Carlo	learning	(C5) TD	learning	(C6)

Planning	(C8) Function	approximation	(C9)

Comments about Test Answers
• The goal is to see your thought process. Try to explain your answer clearly and give

reasons, rather than just writing down an answer (but still be concise)

• Don’t vomit on the page: if you write many answers, and some of them are wrong, I
will mark the wrong ones

• I don’t give partial marks for wrong answers, but if you demonstrate understanding
(but its wrong) then I might give partial marks for that

• One common problem: answering a different question than is asked

• after answering, re-read the question and check if you answered it

• If you think: “this is a simple question, she must have meant this other more
complicated thing”, you are probably wrong. I probably meant the simple thing.

