Course 3, Module 1 On-policy Prediction with Approximation

CMPUT 397 Fall 2020

Announcements

- Discussion session this week
- Reading week next week
- Midterm when you come back from reading week
- I've posted a practice midterm, on eClass

Moving to Approximation

- Our goal remains the same, as in Course 1 and Course 2
- But now we cannot represent value functions perfectly
 - because the space is too big
- Course 3 is about how to extend our algorithm to approximate value functions

Imagine a huge state space

Imagine a huge state space

Imagine a continuous state space

Another continuous state domain

 $p_{t+1} \doteq bound[p_t + \dot{p}_{t+1}]$ $\dot{p}_{t+1} \doteq bound[\dot{p}_t + 0.001A_t - 0.0025\cos(3p_t)]$

Video 1: Moving to Parameterized Functions

- Using parameterized functions to represent value functions. From tables of values to more general functions over states
- Goals:
 - Understand how we can use parameterized functions to approximate values.
 - Explain linear value function approximation.
 - Recognize that the tabular case is a special case of linear value function approximation
 - Understand that there are many ways to parameterize an approximate value function.

 $V(s) \approx v_{\pi}(s) \approx \hat{v}(s, \mathbf{w})$

$$V(s) \approx v_{\pi}(s) \approx \hat{v}(s, \mathbf{w})$$

$$\mathbf{w} \in \mathbb{R}^d, \ e.g., \ \mathbf{w} = egin{bmatrix} 2.1 \\ 0.01 \\ -1.1 \\ 1.2 \\ -0.1 \\ 0.01 \\ 4.93 \\ 0.5 \end{bmatrix}$$

$$V(s) pprox v_{\pi}(s) pprox \hat{v}(s,\mathbf{w}) \doteq \mathbf{w}^{ op} \mathbf{x}(s)$$
 inner product

$$\mathbf{w} \in \mathbb{R}^d \,, \quad e.g., \quad \mathbf{w} = egin{bmatrix} 2.1 \ 0.01 \ -1.1 \ 1.2 \ -0.1 \ 0.01 \ 4.93 \ 0.5 \end{bmatrix}$$

$$V(s) pprox v_{\pi}(s) pprox \hat{v}(s, \mathbf{w}) \doteq \mathbf{w}^{ op} \mathbf{x}(s)$$
 inner product

$$\mathbf{w} \in \mathbb{R}^d, \ e.g., \ \mathbf{w} = egin{bmatrix} 2.1 \\ 0.01 \\ -1.1 \\ 1.2 \\ -0.1 \\ 0.01 \\ 4.93 \\ 0.5 \end{bmatrix}, \ \mathbf{x}(s) = egin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

$$V(s) pprox v_{\pi}(s) pprox \hat{v}(s, \mathbf{w}) \doteq \mathbf{w}^{ op} \mathbf{x}(s)$$
 inner product

$$\mathbf{w} \in \mathbb{R}^d, \quad e.g., \quad \mathbf{w} = \begin{bmatrix} 2.1 \\ 0.01 \\ -1.1 \\ 1.2 \\ -0.1 \\ 0.01 \\ 4.93 \\ 0.5 \end{bmatrix}, \qquad \mathbf{x}(s) = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{x} : \mathbb{S} \to \mathbb{R}^d$$

$$V(s) pprox v_\pi(s) pprox \hat{v}(s,\mathbf{w}) \doteq \mathbf{w}^ op \mathbf{x}(s) \doteq \sum_{i=1}^d w_i \cdot x_i(s)$$
 inner product

$$\mathbf{w} \in \mathbb{R}^d, \quad e.g., \quad \mathbf{w} = \begin{bmatrix} 2.1 \\ 0.01 \\ -1.1 \\ 1.2 \\ -0.1 \\ 0.01 \\ 4.93 \\ 0.5 \end{bmatrix}, \qquad \mathbf{x}(s) = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{x} : \mathbb{S} \to \mathbb{R}^d$$

$$V(s) pprox v_{\pi}(s) pprox \hat{v}(s,\mathbf{w}) \doteq \mathbf{w}^{ op}\mathbf{x}(s) \doteq \sum_{i=1}^{d} w_i \cdot x_i(s)$$
 inner product

$$\mathbf{w} \in \mathbb{R}^d, \quad e.g., \quad \mathbf{w} = \begin{bmatrix} 2.1 \\ 0.01 \\ -1.1 \\ 1.2 \\ -0.1 \\ 0.01 \\ 4.93 \end{bmatrix}, \quad \mathbf{x}(s) = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{x} : \mathcal{S}$$

$$V(s) pprox v_{\pi}(s) pprox \hat{v}(s,\mathbf{w}) \doteq \mathbf{w}^{ op}\mathbf{x}(s) \doteq \sum_{i=1}^{d} w_i \cdot x_i(s) = 1.71$$

$$\mathbf{w} \in \mathbb{R}^d, \quad e.g., \quad \mathbf{w} = \begin{bmatrix} 2.1 \\ 0.01 \\ -1.1 \\ 1.2 \\ -0.1 \\ 0.01 \\ 4.93 \end{bmatrix}, \quad \mathbf{x}(s) = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{x} : \mathbb{S} - \mathbf{w} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Let's look at a simple state aggregation

What would the feature vector be if the agent was somewhere in the bottom left?

What would the feature vector be if the agent was somewhere in the top middle?

What would the feature vector be if the agent was somewhere in the top middle?

What would the feature vector be if the agent was in the middle?

How about here?

What would the feature vector be if the agent was at this point?

What would the feature vector be if the agent was at this point?

What would the feature vector be if the agent was at this point?

- R = +1 per step
- episodic, gamma = 1
- agent starts in the top left corner
- π = shortest path policy
- what should $\hat{v}(s,\mathbf{w})$ look like?

- R = +1 per step
- episodic, gamma = 1
- agent starts in the top left corner
- π = shortest path policy
- what should $\hat{v}(s,\mathbf{w})$ look like?

- R = +1 per step
- episodic, gamma = 1
- agent starts in the top left corner
- π = shortest path policy
- what should $\hat{v}(s,\mathbf{w})$ look like?

- R = +1 per step
- episodic, gamma = 1
- agent starts in the top left corner
- π = shortest path policy
- what should $\hat{v}(s,\mathbf{w})$ look like?

- R = +1 per step
- episodic, gamma = 1
- agent starts in the top left corner
- π = shortest path policy
- what should $\hat{v}(s,\mathbf{w})$ look like?

Video 2: Generalization and Discrimination

- A key concept in machine learning. We cannot learn all the values separately (in fact we wouldn't want to), so we have to make choices.
- Goals:
 - Understand what is meant by generalization and discrimination
 - Understand how generalization can be beneficial
 - Explain why we want both generalization and discrimination from our function approximation

Exercise: Is there any issue with this state aggregation? Can we represent the optimal action-value function?

Video 3: Framing Value Estimation as Supervised Learning

• If we can setup the problem of learning a value function (policy evaluation) as a supervised learning problem, then we can borrow methods from supervised learning to do reinforcement learning with function approximation.

Goals:

- Understand how value estimation can be framed as a supervised learning problem
- Recognize that not all function approximation methods are well suited for reinforcement learning.

Video 4: Value Error

• We want to change the parameters of our function to estimate the value. We need an objective function!

Goals:

- Understand the mean-squared value error objective for policy evaluation
- Explain the role of the state distribution in the objective

Video 5: Introducing Gradient Descent

- An algorithm for adapting the parameters of our estimate of the value function.
- Goals:
 - Understand the idea of gradient descent
 - Understand that gradient descent converges to stationary points

Question

 Why do we care about finding stationary points? i.e., point w where the gradient is zero

Question

 Why do we care about finding stationary points? i.e., point w where the gradient is zero

Video 6: Gradient Monte Carlo for Policy Evaluation

 We use gradient descent idea to get an online algorithm to adjust the parameters of our value function estimate

Goals:

- Understand how to use gradient descent and stochastic gradient descent to minimize value error
- Outline the gradient Monte Carlo algorithm for value estimation

Video 7: State Aggregation with Monte Carlo

So far we have said the value function could be any parametric function. Here we
use a particular one---state aggregation. Simple and effective. And we run an
experiment on a big Random Walk Problem

Goals:

- Understand how state aggregation can be used to approximate the value function
- Apply Gradient Monte-Carlo with state aggregation

Video 8: Semi-gradient TD for Policy Evaluation

- TD with function approximation. Now we can learn value functions, in continuous state spaces AND update the value function parameters on every time-step!!
- Goals:
 - Understand the TD-update for function approximation
 - Outline the Semi-gradient TD algorithm for value estimation.

Semi-gradient TD(0) for estimating $\hat{v} \approx v_{\pi}$

```
Input: the policy \pi to be evaluated
Input: a differentiable function \hat{v}: \mathbb{S}^+ \times \mathbb{R}^d \to \mathbb{R} such that \hat{v}(\text{terminal}, \cdot) = 0
Algorithm parameter: step size \alpha > 0
Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0})
Loop for each episode:
    Initialize S
    Loop for each step of episode:
        Choose A \sim \pi(\cdot|S)
        Take action A, observe R, S'
        \mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})] \nabla \hat{v}(S, \mathbf{w})
        S \leftarrow S'
    until S is terminal
```

Question: What is different compared to Tabular TD(0)?

Semi-gradient TD(0) for estimating $\hat{v} \approx v_{\pi}$

```
Input: the policy \pi to be evaluated
Input: a differentiable function \hat{v}: \mathbb{S}^+ \times \mathbb{R}^d \to \mathbb{R} such that \hat{v}(\text{terminal},\cdot) = 0
Algorithm parameter: step size \alpha > 0
Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0})
```

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose $A \sim \pi(\cdot|S)$

Take action A, observe R, S'

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w})] \nabla \hat{v}(S, \mathbf{w})$$

 $S \leftarrow S'$

until S is terminal

Question: What is different compared to Tabular TD(0)?

Semi-gradient TD(0) for estimating $\hat{v} \approx v_{\pi}$

```
Input: the policy \pi to be evaluated
```

Input: a differentiable function $\hat{v}: \mathbb{S}^+ \times \mathbb{R}^d \to \mathbb{R}$ such that $\hat{v}(\text{terminal},\cdot) = 0$

Algorithm parameter: step size $\alpha > 0$

Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose $A \sim \pi(\cdot|S)$

Take action A, observe R, S'

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w}) \right] \nabla \hat{v}(S, \mathbf{w})$$

 $S \leftarrow S'$

until S is terminal

Question: What is different compared to Tabular TD(0)?

Video 9: Comparing TD and MC with State Aggregation

- An experiment comparing TD and MC with a simple function approximation.
- Goals:
 - Understand that TD converges to biased value estimates
 - Understand that TD can learn faster than Gradient Monte Carlo.

Video 10: The Linear TD Algorithm

• Linear function functions are special. Most of the theory in RL is for the case of linear function approximation. The algorithms can work well, if we have good features.

Goals:

- Derive the TD-update with linear function approximation
- Understand that tabular TD is a special case of linear semi-gradient TD
- Understand why we care about linear TD as a special case.

Video 11: The True Objective for TD

 A bit of theory about TD with function approximation. What does the algorithm converge to?

- Goals:
 - Understand the fixed point of linear TD
 - Describe a theoretical guarantee on the mean squared value error at the TD fixed point

What might the μ (proportion of time the agent spends in each state) look like with this state aggregation?

(1,1)

- R = +1 per step
- episodic, gamma = 1
- agent starts in the top left corner
- π = shortest path policy

Mean Squared Value Error

$$\sum_{s} \mu(s) [\nu_{\pi}(s) - \hat{\nu}(s, \mathbf{w})]^2$$

What might the μ (proportion of time the agent spends in each state) look like with this state aggregation?

Mean Squared Value Error

$$\sum_{s} \mu(s) [\nu_{\pi}(s) - \hat{\nu}(s, \mathbf{w})]^2$$

- R = +1 per step
- episodic, gamma = 1
- agent starts in the top left corner
- π = shortest path policy

$\mu(s)$ Impacts how we update $\hat{v}(s, \mathbf{w})$

Mean Squared Value Error

$$\sum_{s} \mu(s) [v_{\pi}(s) - \hat{v}(s, \mathbf{w})]^2$$

$\mu(s)$ Impacts how we update $\hat{v}(s, \mathbf{w})$

Mean Squared Value Error

$$\sum_{s} \mu(s) [\nu_{\pi}(s) - \hat{\nu}(s, \mathbf{w})]^2$$

The usual recipe for gradient descent

- 1. Specify a function approximation architecture (parametric form of value function)
- 2. Write down your objective function
- 3. Take the derivative of objective function with respect to the weights
- 4. Simplify general gradient expression for your parametric form
- 5. Make a weight update rule:
 - $\mathbf{w} = \mathbf{w} \alpha$ gradient

The usual recipe for gradient descent

- 1. Specify a function approximation architecture (parametric form of value function)
- 2. Write down your objective function
- 3. Take the derivative of objective function with respect to the weights
- 4. Simplify general gradient expression for your parametric form
- 5. Make a weight update rule:
 - $\mathbf{w} = \mathbf{w} \mathbf{\alpha}$ gradient

The usual recipe for gradient descent

- 1. Specify a function approximation architecture (parametric form of value function)
- 2. Write down your objective function
- 3. Take the derivative of objective function with respect to the weights
- 4. Simplify general gradient expression for your parametric form
- 5. Make a weight update rule:
 - $\mathbf{w} = \mathbf{w} \mathbf{\alpha}$ gradient

lets try out the recipe

1. Specify a function approximation architecture (parametric form of value function)

1. Specify a function approximation architecture (parametric form of value function)

We will use State Aggregation

- We will use State Aggregation
 - so the **features** are always **binary** with only a single active feature that is not zero

- We will use State Aggregation
 - so the **features** are always **binary** with only a single active feature that is not zero
 - the value function is a linear function

- We will use State Aggregation
 - so the **features** are always **binary** with only a single active feature that is not zero
 - the value function is a linear function
 - that is, we query the value function by a simple procedure:

- We will use State Aggregation
 - so the features are always binary with only a single active feature that is not zero
 - the value function is a linear function
 - that is, we query the value function by a simple procedure:
 - 1. query the features for the current state

- We will use State Aggregation
 - so the **features** are always **binary** with only a single active feature that is not zero
 - the value function is a linear function
 - that is, we query the value function by a simple procedure:
 - 1. query the features for the current state
 - 2. take the inner product between the features and the weights

- We will use State Aggregation
 - so the **features** are always **binary** with only a single active feature that is not zero
 - the value function is a linear function
 - that is, we query the value function by a simple procedure:
 - 1. query the features for the current state
 - 2. take the inner product between the features and the weights

$$v_{\pi}(s) \approx \hat{v}(s, \mathbf{w}) \doteq \mathbf{w}^{\top} \mathbf{x}(s) \doteq \sum_{i=1}^{n} w_i \cdot x_i(s)$$

We will use the value error

We will use the value error

$$\overline{VE}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) [v_{\pi}(s) - \hat{v}(s, \mathbf{w})]^2$$

We will use the value error

$$\overline{VE}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) [v_{\pi}(s) - \hat{v}(s, \mathbf{w})]^{2}$$
$$= \sum_{s \in \mathcal{S}} \mu(s) [v_{\pi}(s) - \mathbf{w}^{T} \mathbf{x}(s)]^{2}$$

We will use the value error

$$\overline{VE}(\mathbf{w}) \doteq \sum_{s \in \mathcal{S}} \mu(s) [v_{\pi}(s) - \hat{v}(s, \mathbf{w})]^{2}$$
$$= \sum_{s \in \mathcal{S}} \mu(s) [v_{\pi}(s) - \mathbf{w}^{T} \mathbf{x}(s)]^{2}$$

state aggregation

$$\nabla \overline{V} E(\mathbf{w}) =$$

$$\nabla \overline{V} E(\mathbf{w}) = \nabla \sum_{s \in \mathcal{S}} \mu(s) [v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)]^2$$

$$\nabla \overline{V} E(\mathbf{w}) =$$

$$\nabla \overline{VE}(\mathbf{w}) = \nabla \sum_{s \in \mathcal{S}} \mu(s) [v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)]^2$$

$$\nabla \overline{VE}(\mathbf{w}) = \nabla \sum_{s \in \mathcal{S}} \mu(s) [v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)]^2$$
$$= \sum_{s \in \mathcal{S}} \mu(s) \nabla [v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)]^2$$

$$\nabla \overline{VE}(\mathbf{w}) = \nabla \sum_{s \in \mathcal{S}} \mu(s) [v_{\pi}(s) - \mathbf{w}^{T} \mathbf{x}(s)]^{2}$$

$$= \sum_{s \in \mathcal{S}} \mu(s) \nabla [v_{\pi}(s) - \mathbf{w}^{T} \mathbf{x}(s)]^{2}$$

$$= -\sum_{s \in \mathcal{S}} \mu(s) 2[v_{\pi}(s) - \mathbf{w}^{T} \mathbf{x}(s)] \nabla \mathbf{w}^{T} \mathbf{x}(s)$$

4. Simplify the general gradient expression to be specific for your parametric form

$$\nabla \mathbf{w}^T \mathbf{x}(s) = \mathbf{x}(s)$$

The gradient of the inner product is just x

4. Simplify general gradient ...

$$\nabla \overline{VE}(\mathbf{w}) = \nabla \sum_{s \in \mathcal{S}} \mu(s) [v_{\pi}(s) - \mathbf{w}^{T} \mathbf{x}(s)]^{2}$$

$$= \sum_{s \in \mathcal{S}} \mu(s) \nabla [v_{\pi}(s) - \mathbf{w}^{T} \mathbf{x}(s)]^{2}$$

$$= -\sum_{s \in \mathcal{S}} \mu(s) 2[v_{\pi}(s) - \mathbf{w}^{T} \mathbf{x}(s)] \nabla \mathbf{w}^{T} \mathbf{x}(s)$$

$$= -\sum_{s \in \mathcal{S}} \mu(s) 2[v_{\pi}(s) - \mathbf{w}^{T} \mathbf{x}(s)] \mathbf{x}(s)$$

4. Simplify general gradient ... linear value function approximation (state agg.)

$$\nabla \overline{VE}(\mathbf{w}) = \nabla \sum_{s \in \mathcal{S}} \mu(s) [v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)]^2$$

$$= \sum_{s \in \mathcal{S}} \mu(s) \nabla [v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)]^2$$

$$= -\sum_{s \in \mathcal{S}} \mu(s) 2[v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)] \nabla \mathbf{w}^T \mathbf{x}(s)$$

$$= -\sum_{s \in \mathcal{S}} \mu(s) 2[v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

5. Make weight update rule: $w = w - \alpha$ gradient

$$\nabla \overline{VE}(\mathbf{w}) = -\sum_{s \in \mathcal{S}} \mu(s) 2[v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

$$\nabla \overline{VE}(\mathbf{w}) = \sum_{s \in \mathcal{S}} \mu(s) 2[\nu_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

$$\nabla \overline{VE}(\mathbf{w}) = \sum_{s \in \mathcal{S}} \mu(s) 2[v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha 2[v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

$$\nabla \overline{VE}(\mathbf{w}) = \sum_{s \in \mathcal{S}} \mu(s) 2[v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha 2[v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

Wait, Wait!! We don't have v_{π}

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

Wait, Wait!! We don't have v_{π}

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

Wait, Wait!! We don't have v_{π}

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

Let's replace it with something we do have!

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

Let's call it's replacement Ut

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

Let's call it's replacement Ut

Whatever we use in place of v_{π} , it should satisfy one criteria!

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

Let's call it's replacement Ut

Whatever we use in place of v_{π} , it should satisfy one criteria!

$$v_{\pi}(s) = \mathbb{E}[U_t]$$

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [v_{\pi}(s) - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

$$v_{\pi}(s) = \mathbb{E}[U_t]$$

$$v_{\pi}(s) = \mathbb{E}[U_t]$$

We know one such replacement, that meets this criteria!

$$v_{\pi}(s) = \mathbb{E}[U_t]$$

We know one such replacement, that meets this criteria!

$$U_t \doteq G_t$$

$$v_{\pi}(s) = \mathbb{E}[U_t]$$

We know one such replacement, that meets this criteria!

$$U_t \doteq G_t$$

A sample of the return!!

Since we are using sample returns we have a Monte Carlo algorithm!

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [G_t - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

Since we are using sample returns we have a Monte Carlo algorithm!

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha [G_t - \mathbf{w}^T \mathbf{x}(s)] \mathbf{x}(s)$$

Monte Carlo Policy Evaluation for finding v_{π}

Exercise Question

$$\min_{\mathbf{w} \in \mathbb{R}^d} \sum_{s} \mu(s) [v_{\pi}(s) - \hat{v}(s, \mathbf{w})]^2$$

 Why can't we directly optimize the MSVE? We know the stochastic gradient descent update would be the following

$$\mathbf{w}_t + \alpha[v_{\pi}(S_t) - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})$$

Further, why doesn't the TD fixed point minimize the MSVE?