Course 3, Module 1
On-policy Prediction with
Approximation

CMPUT 397
Fall 2020




Announcements

Discussion session this week
Reading week next week
Midterm when you come back from reading week

I’ve posted a practice midterm, on eClass



Moving to Approximation

e QOur goal remains the same, as in Course 1 and Course 2
e But now we cannot represent value functions perfectly
e because the space Is too big

e Course 3 is about how to extend our algorithm to approximate value functions
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Imagine a continuous state space
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Another continuous state domain
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Video 1: Moving to
Parameterized Functions

e Using parameterized functions to represent value functions. From tables of values
to more general functions over states

e (Goals:
e Understand how we can use parameterized functions to approximate values.
e Explain linear value function approximation.

* Recognize that the tabular case is a special case of linear value function
approximation

e Understand that there are many ways to parameterize an approximate value function.
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Let's look at a simple state aggregation
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What might the final estimate of the value
function look like with this state aggregation?

(1,1)

e R =+1 per step

e episodic, gamma = 1
e agent starts in the top left corner

e TT = shortest path policy

e what should ¥(s, W )look like?
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What might the final estimate of the value
function look like with this state aggregation?

Ew%r) e R=+1 per step
e episodic, gamma = 1
J) e agent starts in the top left corner
- e TT = shortest path policy

e what should ¥(s, W )look like?




Video 2: Generalization and
Discrimination

e A key concept in machine learning. We cannot learn all the values separately (in fact
we wouldn't want to), so we have to make choices.

e (Goals:
e Understand what is meant by generalization and discrimination
e Understand how generalization can be beneficial

e Explain why we want both generalization and discrimination from our function
approximation



Exercise: Is there any issue with this state aggregation?
Can we represent the optimal action-value function?




Video 3: Framing Value Estimation as
Supervised Learning

e |f we can setup the problem of learning a value function (policy evaluation) as a
supervised learning problem, then we can borrow methods from supervised learning

to do reinforcement learning with function approximation.

e (Goals:

e Understand how value estimation can be framed as a supervised learning problem

e Recognize that not all function approximation methods are well suited for
reinforcement learning.



Video 4: Value Error

e We want to change the parameters of our function to estimate the value. We need
an objective function!

e (Goals:
e Understand the mean-squared value error objective for policy evaluation

e Explain the role of the state distribution in the objective
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The Mean Squared Value Error Objective
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Video 5: Introducing Gradient Descent

e An algorithm for adapting the parameters of our estimate of the value function.
e (Goals:
e Understand the idea of gradient descent

e Understand that gradient descent converges to stationary points



Question 6

flz)=z xsin(z” ) +1
f'(x) =sinl - ) + 27" xcos(z” |
4 (2.8137, 3.8081)
e Why do we care about finding /\

stationary points? i.e., point w

where the gradient is zero (1.3552, 2.3076)

2
(0,0)




Question 6

flz)=z xsin(z” ) +1
f'(x) =sinl - ) + 27" xcos(z” |
4 (2.8137, 3.8081)
e Why do we care about finding /\

stationary points? i.e., point w

where the gradient is zero (1.3552, 2.3076)

2
(0,0)




Video 6: Gradient Monte Carlo for
Policy Evaluation

e We use gradient descent idea to get an online algorithm to adjust the parameters of
our value function estimate

e (Goals:

e Understand how to use gradient descent and stochastic gradient descent to
minimize value error

e Qutline the gradient Monte Carlo algorithm for value estimation



Video 7: State Aggregation with
Monte Carlo

e So far we have said the value function could be any parametric function. Here we
use a particular one---state aggregation. Simple and effective. And we run an
experiment on a big Random Walk Problem

e (Goals:
e Understand how state aggregation can be used to approximate the value function

e Apply Gradient Monte-Carlo with state aggregation



Video 8: Semi-gradient TD for
Policy Evaluation

e TD with function approximation. Now we can learn value functions, in continuous
state spaces AND update the value function parameters on every time-step!!

e (Goals:
e Understand the TD-update for function approximation

e Qutline the Semi-gradient TD algorithm for value estimation.
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Input: the policy 7 to be evaluated
Input: a differentiable function ¢ : 8T x R? — R such that ©(terminal,-) = 0
Algorithm parameter: step size o > 0

Initialize value-function weights w € R arbitrarily|(e.g., w = 0)

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A ~ 7 (:|.9)
Take action A. observe R.S’

until S is terminal

Question: What is different compared to Tabular TD(0)?



Video 9: Comparing TD and MC
with State Aggregation

e An experiment comparing TD and MC with a simple function approximation.
e (Goals:
e Understand that TD converges to biased value estimates

e Understand that TD can learn faster than Gradient Monte Carlo.



Video 10: The Linear TD Algorithm

e |inear function functions are special. Most of the theory in RL is for the case of
linear function approximation. The algorithms can work well, if we have good
features.

e (Goals:
e Derive the TD-update with linear function approximation
e Understand that tabular TD is a special case of linear semi-gradient TD

e Understand why we care about linear TD as a special case.



Video 11: The True Objective for TD

e A bit of theory about TD with function approximation. What does the algorithm
converge to?

e (Goals:
e Understand the fixed point of linear TD

e Describe a theoretical guarantee on the mean squared value error at the TD fixed
point
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The usual recipe for gradient descent

1. Specify a function approximation architecture (parametric form of value
function)

2. Write down your objective function
3. Take the derivative of objective function with respect to the weights

4. Simplify general gradient expression for your parametric form

5. Make a weight update rule;:

* W=W - gradient
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The usual recipe for gradient descent

1. Specify a function approximation architecture (parametric form of value
function)

2. Write down your objective function

3. Take the derivative of objective function with respect to the weights

gradient descent

4. Simplify general gradient expres: sion for your parametric form

5. Make a weight upeate rule:

e w = wl(-)Ja gradient

lets try out the recipe
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1. Specify a function approximation architecture
(parametric form of value function)

e We will use State Aggregation
 so0 the features are always binary with only a single active feature that is not zero
e the value function is a linear function
e thatis, we query the value function by a simple procedure:
1. query the features for the current state

2. take the inner product between the features and the weights

ve(s) = (s, w) = w' x(s) = sz:ﬁz(s)
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3. Take the gradient of objective function with
respect to the weights
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4. Simplify the general gradient expression to be
specific for your parametric form

Vw!x(s) = x(s)

The gradient of the inner product is just x



4. Simplify general gradient ..
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gradient of
linear value function
approximation (state agg.)

4. Simplify general gradient ...
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5. Make weight update rule: w = w@a gradient
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A sample of the return!!
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Since we are using sample returns we have a
Monte Carlo algorithm!

W, =W+ a[G,— w'x(s)]x(s)

Monte Carlo Policy Evaluation for finding vn



Exercise Question
min ) u(s)[vy(s) — H(s, W)

weR?

e Why can’t we directly optimize the MSVE? We know the stochastic gradient descent
update would be the following

w,+ alv (S,) — v(S,, w)] VI(S,, w)

e Further, why doesn’t the TD fixed point minimize the MSVE?



