
Midterm 
Review

CMPUT 397

Fall 2019

• Link for questions:

• http://www.tricider.com/brainstorming/3Bjwvv5RURp

http://www.tricider.com/brainstorming/3Bjwvv5RURp

Course Roadmap

Bandits	(Ch2) MDPs,	returns,	value	functions	(Ch3) Dynamic	programming	(Ch4)

Monte	Carlo	learning	(Ch5) TD	learning	(Ch6)

Planning	(Ch8)

Course Roadmap

Bandits	(Ch2) MDPs,	returns,	value	functions	(Ch3) Dynamic	programming	(Ch4)

Monte	Carlo	learning	(Ch5) TD	learning	(Ch6)

Planning	(Ch8)

Bandits

• Simple decision making problem with 1 state

Bandits

• Know the exploration-exploitation tradeoff!

• i.e. Why shouldn’t you always be greedy? Why not constantly explore?

• Know about incremental averaging (and why we do it!)

• NewEstimate←OldEstimate+StepSize[Target-OldEstimate]

Course Roadmap

Bandits	(Ch2) MDPs,	returns,	value	functions	(Ch3) Dynamic	programming	(Ch4)

Monte	Carlo	learning	(Ch5) TD	learning	(Ch6)

Planning	(Ch8)

MDPs, Returns, Value Functions

• Decision making problems with many states

MDPs, Returns, Value Functions

• Sequential decision making: must take many actions in a row to maximize reward

• Agent is concerned with returns (estimating and/or maximizing):

• Specifically, the expected return, which depends on the agent’s policy and the
environment dynamics

Gt ≐ Rt+1+γRt+2+γ2Rt+3 + …+γk−1Rt+k + …Gt ≐ Rt+1+γRt+2+γ2Rt+3 + …+γk−1Rt+k + …

MDPs, Returns, Value Functions

• Value-based methods address this by learning to predict what the expected return:
value functions

• Value functions:

vπ(s) ≐ 𝔼π [Gt ∣ St = s] “How good is this state”

qπ(s, a) ≐ 𝔼π [Gt ∣ St = s, At = a] “How good is taking this action in this state”

MDPs, Returns, Value Functions

• Bellman Equations: write the value of a state in terms of the value of another state

• i.e. for all states:

= ∑
a

π(a |s)∑
s′�

∑
r

p(s′�, r |s, a)[r + γvπ(s′�)]

vπ(s) ≐ 𝔼π [Gt ∣ St = s]

MDPs, Returns, Value Functions

• Policy improvement

• If you derive a greedy policy with respect to the action-values of another policy,
the new policy will be at least as “good” as the previous one

• If the new policy did not change from the previous policy, the policy is greedy with
respect to its own value function, and is an optimal policy π*

• Optimal value functions denoted v*(s) and q*(s,a)

Course Roadmap

Bandits	(Ch2) MDPs,	returns,	value	functions	(Ch3) Dynamic	programming	(Ch4)

Monte	Carlo	learning	(Ch5) TD	learning	(Ch6)

Planning	(Ch8)

Dynamic Programming

• Policy Evaluation

• Computes an approximate value function V ≈ vπ(s)

• Sweeps across all states and actions, and evaluates the Bellman equation using the
current estimates in the value function

vk+1(s) ← ∑
a

π(a |s)∑
s′�

∑
r

p(s′�, r |s, a)[r + γvk(s′�)]

Dynamic Programming

• Introduces the idea of bootstrapping- basing the update to a state’s value on the
agent's current value estimates of successor states

• Requires knowledge of the environment dynamics p(s',r | s,a)

Dynamic Programming Self-test
• Given an MDP and a value function (i.e. all zeros), could you write out what the

values would be after a sweep of a dynamic programming algorithm (i.e. policy
evaluation)

• Implications of the policy improvement theorem:

• i.e. if a policy is greedy wrt to it's own value function, what does that tell you?

vk+1(s) ← ∑
a

π(a |s)∑
s′�

∑
r

p(s′�, r |s, a)[r + γvk(s′�)]

Course Roadmap

Bandits	(Ch2) MDPs,	returns,	value	functions	(Ch3) Dynamic	programming	(Ch4)

Monte	Carlo	learning	(Ch5) TD	learning	(Ch6)

Planning	(Ch8)

Monte Carlo Learning

• Policy Evaluation: computes an approximate value function V ≈ vπ(s)

• Sample returns from states by following policy π, then average those returns for
each state

• Self-test: Why do we use a sample average of the returns?

Monte Carlo Learning

• Doesn’t need a model of the environment

• We only used it in episodic problems: learning only occurs after each episode

Monte Carlo Self-test

• Given a trajectory of experience (states, actions, rewards), some initial value
function (i.e. all zeros), and parameters (step size, discount rate), can you write out
the value updates that (every-visit) Monte Carlo would have performed?

•

Course Roadmap

Bandits	(Ch2) MDPs,	returns,	value	functions	(Ch3) Dynamic	programming	(Ch4)

Monte	Carlo	learning	(Ch5) TD	learning	(Ch6)

Planning	(Ch8)

Temporal Difference Learning

Previous	expe
rience:

Temporal Difference Learning

Previous	expe
rience:

Temporal Difference Learning

New	experien
ce:

Temporal Difference Learning

New	experien
ce:

TD Learning

• Computes an approximate value function V ≈ vπ(s)

• Policy Evaluation

• Combines ideas from Monte Carlo and Dynamic Programming- uses a mix of
sampled information and bootstrapping off of current estimates

• Can learn online, without having to wait for the end of an episode

TD Learning

One-step	TD	(or	TD(0)):
! "# ← ! "# + & '(# − ! "#

'(# = +#,- + .! "#,-

One-step	Sarsa	(or	Sarsa(0)):
/ "#, 1# ← / "#, 1# + & '(# − / "#, 1#

'(# = +#,- + ./ "#,-, 1#,-

TD Self-test

• What is the difference between online and offline updating?

• What is the difference between Sarsa, Q-learning, and Expected Sarsa?

Course Roadmap

Bandits	(Ch2) MDPs,	returns,	value	functions	(Ch3) Dynamic	programming	(Ch4)

Monte	Carlo	learning	(Ch5) TD	learning	(Ch6)

Planning	(Ch8)

Planning, Learning and Acting

• Planning: a process which takes a model as input and produces or improves a
policy

• Dyna uses a model to simulate experience and improve its value estimates, where
greedifying with respect to these value estimates produces an improved policy

•

Dyna Self-test

• What is a model?

• What is the difference between simulated and real experience?

• Explain the exploration / exploitation trade-off in model-based RL. How does it differ
from the trade-off in the model-free setting?

• Describe at a high level how the Dyna-Q algorithm works?

Course Roadmap

Bandits	(C2) MDPs,	returns,	value	functions	(C3) Dynamic	programming	(C4)

Monte	Carlo	learning	(C5) TD	learning	(C6)

Planning	(C8) Function	approximation	(C9)

