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e Link for questions:

e http://www.tricider.com/brainstorming/3BjwvvSRURp



http://www.tricider.com/brainstorming/3Bjwvv5RURp
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Bandits

e Simple decision making problem with 1 state

En-o*m




Bandits

e Know the exploration-exploitation tradeoff!
e |.e. Why shouldn’t you always be greedy? Why not constantly explore?
e Know about incremental averaging (and why we do it!)

e NewEstimate+—OldEstimate+StepSize[Target-OldEstimate]
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MDPs, Returns, Value Functions

e Decision making problems with many states




MDPs, Returns, Value Functions

e Sequential decision making: must take many actions in a row to maximize reward

e Agent is concerned with returns (estimating and/or maximizing):

G, =R, +/R »+7' R 3+ .. 47 'R+ ...

o Specifically, the expected return, which depends on the agent’s policy and the
environment dynamics



MDPs, Returns, Value Functions

e \alue-based methods address this by learning to predict what the expected return:
value functions

e \/alue functions:

14 (S) = [ [Gt | St — S] “How good is this state”

q (s,a) = [& [Gt | St — S,At — a] “How good is taking this action in this state”



MDPs, Returns, Value Functions

e Bellman Equations: write the value of a state in terms of the value of another state

e |.e. for all states:

v (s) =[E_ [Gt | S, = S]

— Zﬂ'(dlS)z Zp(s’,rls,a)[l"F}’Vﬂ;(S,)]




MDPs, Returns, Value Functions

e Policy improvement

* |f you derive a greedy policy with respect to the action-values of another policy,
the new policy will be at least as “good™ as the previous one

e |f the new policy did not change from the previous policy, the policy is greedy with
respect to its own value function, and is an optimal policy T*

e Optimal value functions denoted v*(s) and g*(s,a)
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Dynamic Programming

e Policy Evaluation
e Computes an approximate value function V = vp(s)

e Sweeps across all states and actions, and evaluates the Bellman equation using the
current estimates in the value function

Vi 1(8) < Z nw(als) Z Zp(s’,r |s,a) [r + yvk(s’)]



Dynamic Programming

* |ntroduces the idea of bootstrapping- basing the update to a state’s value on the
agent's current value estimates of successor states

 Requires knowledge of the environment dynamics p(s',r | s,a)



Dynamic Programming Self-test

e (Given an MDP and a value function (i.e. all zeros), could you write out what the
values would be after a sweep of a dynamic programming algorithm (i.e. policy
evaluation)

Vi 1(s) < Z r(a|s) Z Zp(s’,r |s,a) |r + yv,(s)]

e |mplications of the policy improvement theorem:

e |.e.If apolicyis greedy wrt to it's own value function, what does that tell you?
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Monte Carlo Learning

e Policy Evaluation: computes an approximate value function V = vn(s)

e Sample returns from states by following policy mt, then average those returns for
each state

e Self-test: Why do we use a sample average of the returns?



Monte Carlo Learning

e Doesn’t need a model of the environment

* We only used it in episodic problems: learning only occurs after each episode



Monte Carlo Self-test

e (Given a trajectory of experience (states, actions, rewards), some initial value
function (i.e. all zeros), and parameters (step size, discount rate), can you write out
the value updates that (every-visit) Monte Carlo would have performed?
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Temporal Difference Learning

New experience




Temporal Difference Learning




1D Learning

e Computes an approximate value function V = vy(s)

e Policy Evaluation

e Combines ideas from Monte Carlo and Dynamic Programming- uses a mix of
sampled information and bootstrapping off of current estimates

e Can learn online, without having to wait for the end of an episode



1D Learning

One-step TD (or TD(0)):
V(Se) <« V(Se) + a[Gt — V(St)]

Ge = Rey1 + ¥V (Se41)

One-step Sarsa (or Sarsa(0)):

Q(St, Ar) <« Q(S¢, Ap) + “[ﬁt — Q(St:At)]

Ge = Rey1 +vQ(Ses1,Ars1)



TD Self-test

 What is the difference between online and offline updating?

e What is the difference between Sarsa, Q-learning, and Expected Sarsa?
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Planning, Learning and Acting

 Planning: a process which takes a model as input and produces or improves a
policy

* Dyna uses a model to simulate experience and improve its value estimates, where
greedifying with respect to these value estimates produces an improved policy



Dyna Self-test

What is a model?

What is the difference between simulated and real experience?

Explain the exploration / exploitation trade-off in model-based RL. How does it differ
from the trade-off in the model-free setting?

Describe at a high level how the Dyna-Q algorithm works?
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