Midterm
Review

CMPUT 397
Fall 2019

e Link for questions:

e http://www.tricider.com/brainstorming/3BjwvvSRURp

http://www.tricider.com/brainstorming/3Bjwvv5RURp

Course Roadmap

Bandits (Ch2) mmsp MDPs, returns, value functions (Ch3) ==y Dynamic programming (Ch4)

mmm) Monte Carlo learning (Ch5) s TD learning (Ch6)

Planning (Ch8)

Course Roadmap

Bandits (ChZ2)|==sp MDPs, returns, value functions (Ch3) == Dynamic programming (Ch4)

mmm) Monte Carlo learning (Ch5) s TD learning (Ch6)

Planning (Ch8)

Bandits

e Simple decision making problem with 1 state

En-o*m

Bandits

e Know the exploration-exploitation tradeoff!
e |.e. Why shouldn’t you always be greedy? Why not constantly explore?
e Know about incremental averaging (and why we do it!)

e NewEstimate+—OldEstimate+StepSize[Target-OldEstimate]

Course Roadmap

Bandits (Ch2) ===y | MDPs, returns, value functions (Ch3) Dynamic programming (Ch4)

mmm) Monte Carlo learning (Ch5) s TD learning (Ch6)

Planning (Ch8)

MDPs, Returns, Value Functions

e Decision making problems with many states

MDPs, Returns, Value Functions

e Sequential decision making: must take many actions in a row to maximize reward

e Agent is concerned with returns (estimating and/or maximizing):

G, =R, +/R »+7' R 3+ .. 47 'R+ ...

o Specifically, the expected return, which depends on the agent’s policy and the
environment dynamics

MDPs, Returns, Value Functions

e \alue-based methods address this by learning to predict what the expected return:
value functions

e \/alue functions:

14 (S) = [[Gt | St — S] “How good is this state”

q (s,a) = [& [Gt | St — S,At — a] “How good is taking this action in this state”

MDPs, Returns, Value Functions

e Bellman Equations: write the value of a state in terms of the value of another state

e |.e. for all states:

v (s) =[E_ [Gt | S, = S]

— Zﬂ'(dlS)z Zp(s’,rls,a)[l"F}’Vﬂ;(S,)]

MDPs, Returns, Value Functions

e Policy improvement

* |f you derive a greedy policy with respect to the action-values of another policy,
the new policy will be at least as “good™ as the previous one

e |f the new policy did not change from the previous policy, the policy is greedy with
respect to its own value function, and is an optimal policy T*

e Optimal value functions denoted v*(s) and g*(s,a)

Course Roadmap

Bandits (Ch2) sy MDPs, returns, value functions (Ch3) == | Dynamic programming (Ch4)

mmm) Monte Carlo learning (Ch5) s TD learning (Ch6)

Planning (Ch8)

Dynamic Programming

e Policy Evaluation
e Computes an approximate value function V = vp(s)

e Sweeps across all states and actions, and evaluates the Bellman equation using the
current estimates in the value function

Vi 1(8) < Z nw(als) Z Zp(s’,r |s,a) [r + yvk(s’)]

Dynamic Programming

* |ntroduces the idea of bootstrapping- basing the update to a state’s value on the
agent's current value estimates of successor states

 Requires knowledge of the environment dynamics p(s',r | s,a)

Dynamic Programming Self-test

e (Given an MDP and a value function (i.e. all zeros), could you write out what the
values would be after a sweep of a dynamic programming algorithm (i.e. policy
evaluation)

Vi 1(s) < Z r(a|s) Z Zp(s’,r |s,a) |r + yv,(s)]

e |mplications of the policy improvement theorem:

e |.e.If apolicyis greedy wrt to it's own value function, what does that tell you?

Course Roadmap

Bandits (Ch2) mmsp MDPs, returns, value functions (Ch3) ==y Dynamic programming (Ch4)

mmm) | Monte Carlo learning (Ch5) TD learning (Ch6))

Planning (Ch8)

Monte Carlo Learning

e Policy Evaluation: computes an approximate value function V = vn(s)

e Sample returns from states by following policy mt, then average those returns for
each state

e Self-test: Why do we use a sample average of the returns?

Monte Carlo Learning

e Doesn’t need a model of the environment

* We only used it in episodic problems: learning only occurs after each episode

Monte Carlo Self-test

e (Given a trajectory of experience (states, actions, rewards), some initial value
function (i.e. all zeros), and parameters (step size, discount rate), can you write out
the value updates that (every-visit) Monte Carlo would have performed?

Course Roadmap

Bandits (Ch2) mmsp MDPs, returns, value functions (Ch3) ==y Dynamic programming (Ch4)

mmm) Monte Carlo learning (Ch5) s | TD learning (Ch6) |

Planning (Ch8)

Tem |
poral Difference Learnin
O

Previous eXperience:

7 - €.

Temporal Difference Learning

ence:
previous experen

Q (a).-

‘h‘

Temporal Difference Learning

New experience

Temporal Difference Learning

1D Learning

e Computes an approximate value function V = vy(s)

e Policy Evaluation

e Combines ideas from Monte Carlo and Dynamic Programming- uses a mix of
sampled information and bootstrapping off of current estimates

e Can learn online, without having to wait for the end of an episode

1D Learning

One-step TD (or TD(0)):
V(Se) <« V(Se) + a[Gt — V(St)]

Ge = Rey1 + ¥V (Se41)

One-step Sarsa (or Sarsa(0)):

Q(St, Ar) <« Q(S¢, Ap) + “[ﬁt — Q(St:At)]

Ge = Rey1 +vQ(Ses1,Ars1)

TD Self-test

 What is the difference between online and offline updating?

e What is the difference between Sarsa, Q-learning, and Expected Sarsa?

Course Roadmap

Bandits (Ch2) mmsp MDPs, returns, value functions (Ch3) ==y Dynamic programming (Ch4)

mmm) Monte Carlo learning (Ch5) s TD learning (Ch6)

Planning (Ch8)

Planning, Learning and Acting

 Planning: a process which takes a model as input and produces or improves a
policy

* Dyna uses a model to simulate experience and improve its value estimates, where
greedifying with respect to these value estimates produces an improved policy

Dyna Self-test

What is a model?

What is the difference between simulated and real experience?

Explain the exploration / exploitation trade-off in model-based RL. How does it differ
from the trade-off in the model-free setting?

Describe at a high level how the Dyna-Q algorithm works?

Course Roadmap

Bandits (C2) ==mp MDPs, returns, value functions (C3) == Dynamic programming (C4)

mmm)p Monte Carlo learning (C5) =mmmp TD learning (C6) mmmmm

