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• Link for questions: 


• http://www.tricider.com/brainstorming/3Bjwvv5RURp

http://www.tricider.com/brainstorming/3Bjwvv5RURp
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Bandits

• Simple decision making problem with 1 state



Bandits

• Know the exploration-exploitation tradeoff!


• i.e. Why shouldn’t you always be greedy? Why not constantly explore?


• Know about incremental averaging (and why we do it!)


• NewEstimate←OldEstimate+StepSize[Target-OldEstimate]
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MDPs, Returns, Value Functions

• Decision making problems with many states



MDPs, Returns, Value Functions

• Sequential decision making: must take many actions in a row to maximize reward


• Agent is concerned with returns (estimating and/or maximizing):


• Specifically, the expected return, which depends on the agent’s policy and the 
environment dynamics

Gt ≐ Rt+1+γRt+2+γ2Rt+3 + …+γk−1Rt+k + …Gt ≐ Rt+1+γRt+2+γ2Rt+3 + …+γk−1Rt+k + …



MDPs, Returns, Value Functions

• Value-based methods address this by learning to predict what the expected return: 
value functions


• Value functions:

vπ(s) ≐ 𝔼π [Gt ∣ St = s] “How good is this state”

qπ(s, a) ≐ 𝔼π [Gt ∣ St = s, At = a] “How good is taking this action in this state”



MDPs, Returns, Value Functions

• Bellman Equations: write the value of a state in terms of the value of another state


• i.e. for all states:

= ∑
a

π(a |s)∑
s′�

∑
r

p(s′�, r |s, a)[r + γvπ(s′�)]

vπ(s) ≐ 𝔼π [Gt ∣ St = s]



MDPs, Returns, Value Functions

• Policy improvement 

• If you derive a greedy policy with respect to the action-values of another policy, 
the new policy will be at least as “good” as the previous one


• If the new policy did not change from the previous policy, the policy is greedy with 
respect to its own value function, and is an optimal policy π*


• Optimal value functions denoted v*(s) and q*(s,a)
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Dynamic Programming

• Policy Evaluation


• Computes an approximate value function V ≈ vπ(s)


• Sweeps across all states and actions, and evaluates the Bellman equation using the 
current estimates in the value function

vk+1(s) ← ∑
a

π(a |s)∑
s′�

∑
r

p(s′�, r |s, a)[r + γvk(s′�)]



Dynamic Programming

• Introduces the idea of bootstrapping- basing the update to a state’s value on the 
agent's current value estimates of successor states


• Requires knowledge of the environment dynamics p(s',r | s,a)



Dynamic Programming Self-test
• Given an MDP and a value function (i.e. all zeros), could you write out what the 

values would be after a sweep of a dynamic programming algorithm (i.e. policy 
evaluation)


• Implications of the policy improvement theorem:


• i.e. if a policy is greedy wrt to it's own value function, what does that tell you?

vk+1(s) ← ∑
a

π(a |s)∑
s′�

∑
r

p(s′�, r |s, a)[r + γvk(s′�)]
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Monte Carlo Learning

• Policy Evaluation: computes an approximate value function V ≈ vπ(s)


• Sample returns from states by following policy π, then average those returns for 
each state


• Self-test: Why do we use a sample average of the returns?



Monte Carlo Learning

• Doesn’t need a model of the environment


• We only used it in episodic problems: learning only occurs after each episode



Monte Carlo Self-test

• Given a trajectory of experience (states, actions, rewards), some initial value 
function (i.e. all zeros), and parameters (step size, discount rate), can you write out 
the value updates that (every-visit) Monte Carlo would have performed?

•
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Temporal Difference Learning

Previous	expe
rience:
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TD Learning

• Computes an approximate value function  V ≈ vπ(s)


• Policy Evaluation


• Combines ideas from Monte Carlo and Dynamic Programming- uses a mix of 
sampled information and bootstrapping off of current estimates


• Can learn online, without having to wait for the end of an episode



TD Learning

One-step	TD	(or	TD(0)):
! "# ← ! "# + & '(# − ! "#

'(# = +#,- + .! "#,-

One-step	Sarsa	(or	Sarsa(0)):
/ "#, 1# ← / "#, 1# + & '(# − / "#, 1#

'(# = +#,- + ./ "#,-, 1#,-



TD Self-test

• What is the difference between online and offline updating?


• What is the difference between Sarsa, Q-learning, and Expected Sarsa?
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Planning, Learning and Acting

• Planning: a process which takes a model as input and produces or improves a 
policy 

• Dyna uses a model to simulate experience and improve its value estimates, where 
greedifying with respect to these value estimates produces an improved policy

•



Dyna Self-test

• What is a model?


• What is the difference between simulated and real experience?


• Explain the exploration / exploitation trade-off in model-based RL. How does it differ 
from the trade-off in the model-free setting? 


• Describe at a high level how the Dyna-Q algorithm works?
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