Course 3, Module 1
On-policy Prediction with
Approximation

CMPUT 397
Fall 2019




e Link for questions:

e http://www.tricider.com/brainstorming/3D4V06mUv2V



http://www.tricider.com/brainstorming/3D4V06mUv2V

lmagine a continuous state

space
p (1,1)




6

/

| et's ook at a simple state



What would the teature vector be if the
agent was somewhere in the bottom left”

AN
Ol
O
O 2000000




What would the teature vector be it the
agent was somewhere in the top middle”

1 2 3 0
- 0
4 5 6 0
0
“““ 0

7 8 |
: G 0
: 0




What would the teature vector be If the
agent was in the middle”

AN
Ol
o)
O OO0 000




How about here”

1 2 3
4 5 o )
; X\S
.
7 8 :_ G |

O OO0 000



Or here?

Y
OO OO+~ 000




What would the feature vector be If the
agent was at this point”

(1,1)

1 2 3 0
0

T g)
X(S) = 0

7 8l 0
G 0

' 0




OO OO0 00



What might the final estimate of the value
function look like with this state aggregation”

A (1,1)
* R=+1 per step
e episodic, gamma = 1
J'-) e agent starts in the top left corner
-> e TT = shortest path policy

e what should (s, W )look like?




What might the p (proportion of time the agent spends
N each state) look like with this state aggregation”

(1,1) Mean Squared
Value Error
G I Z u(s)[v. (s) — v(s, w)]*
P o N e tract
The fraction of
time we spend Iin §
> - when following
e R=+1 per step policy 7
'L) 1‘_) e episodic, gamma = 1
e agent starts in the top left corner

e TT = shortest path policy



J(s) Impacts how we update (s, w)

Mean Squared
Value Error

Y u($)[v,(s) — (s, w)I?
T\

The fraction of
time we spend in$
when following

policy 7T

PN ERy




The usual recipe for gradient descent

1. Specify a function approximation architecture (parametric form of value
function)

2. Write down your objective function

3. Take the derivative of objective function with respect to the weights

_~gradient descent

4. Simplify general gradient expre ssion for your parametric form

5. Make a weight upeafe rule:

e w = w/(-Ja gradient

lets try out the recipe



1. Specify a function approximation architecture
(parametric form of value function)

* We will use State Aggregation
* so the features are always binary with only a single active feature that is not zero
* the value function is a linear function
e that is, we query the value function by a simple procedure:
1. query the features for the current state

2. take the inner product between the features and the weights

ve(s) = (s, w) = w' x(s) = sz:ﬁz(s)



2. Write down your objective function

e \\e will use the value error state

' - aggreation
sesS

= u(s)]

seS




3. Take the gradient of objective function with
respect to the weights

VVE(wW) = V ), 1()[v(s) — w'x(s)]?

sES



3. Take the gradient of objective function with
respect to the weights

VVE(wW) = V ) #(5)[v(s) = wIx(s)]’
sES
= ) 11(5) VIvy(s) — w'x(s)]?
sES

= = ) u()20,(5) — WIX(5)] VW (s)

sed



4. Simplify the general gradient expression to be
specific for your parametric form

Vw!x(s) = x(s)

The gradient of the inner product is just x



gradient of
linear value function
" approximation (state agd.)

4. Simplify general gradient ..

VVE(W) = V ), 1()[ves) — w'x(s)]?
SES
= ) 11(5) VI[vy(s) — w'x(s)]?
SES ]
= — ) u()2[v(s) — WIX(s)] VW f
SES

= = 3 620 — W)

sed



5. Make weight update rule: w = w@a gradient

VVE(w)=[]) (5)2[v(s) = WX(5)IX(5)

sed

W =W, +ally, (S) — w!x(s)]x(s)

W, =W, +alv.(s)— w!x(s)]x(s)



Wait, Wait, Wait!! We don't have vn

W =W, + aly(s)|— wIx(s)]x(s)

Let's replace it with something we do have!



Let's replace vn with something we do have!

Let's call it's replacement Ut

Whatever we use Iin place of vn, It should satisfy

one criteria!
V]Z'(S) — [E[Ut]

W, =W+ a[— w!x(s)]x(s)



Whatever we use in place of vn, It should satisty
one criteria!

v(s) = E[U]

We know one such replacement, that meets this
criteria!

l]ti Gt

A sample of the return!!



Since we are using sample returns we have a
Monte Carlo algorithm!

W, =W+ a[G,— w'x(s)]x(s)

Monte Carlo Policy Evaluation for finding vr



