
Course 3, Module 1  
On-policy Prediction with

Approximation
CMPUT 397

Fall 2019

Announcements
• If you get zero on a participation mark for one week there are two typical reasons:

• you did not submit

• you submitted a discussion topic that was not acceptable (major formatting &
spelling problems, unclear, asked a question that was the topic of a video, asked
for help etc)

• the reasons will be noted in eclass

• Are you checking eclass? Do you get the announcements?

• Link for questions:

• http://www.tricider.com/brainstorming/3D4V06mUv2V

http://www.tricider.com/brainstorming/3D4V06mUv2V

Imagine a huge state space

G

Imagine a huge state space

G

Imagine a continuous state
space

G

Imagine a continuous state
space

G

Imagine a continuous state
space

G

Another continuous state
domain9.4. CONTROL WITH FUNCTION APPROXIMATION 213

!1.2

Position

0.6

Step 428

Goal

Position

4

0

!
.0
7

.0
7

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

Position

Position

Position

0

27

0

120

0

104

0

46

Episode 12

Episode 104 Episode 1000 Episode 9000

MOUNTAIN CAR

Figure 9.10: The mountain–car task (upper left panel) and the cost-to-go function
(� maxa q̂(s, a,✓)) learned during one run.

The reward in this problem is �1 on all time steps until the car moves past its goal
position at the top of the mountain, which ends the episode. There are three possible
actions: full throttle forward (+1), full throttle reverse (�1), and zero throttle (0).
The car moves according to a simplified physics. Its position, pt, and velocity, ṗt,
are updated by

pt+1
.
= bound

⇥
pt + ṗt+1

⇤

ṗt+1
.
= bound

⇥
ṗt + 0.001At � 0.0025 cos(3pt)

⇤
,

where the bound operation enforces �1.2  pt+1  0.5 and �0.07  ṗt+1  0.07.
When pt+1 reached the left bound, ṗt+1 was reset to zero. When it reached the
right bound, the goal was reached and the episode was terminated. Each episode
started from a random position and velocity uniformly chosen from these ranges. To
convert the two continuous state variables to binary features, we used gridtilings as
in Figure 9.5. We used ten 9 ⇥ 9 tilings, each o↵set by a random fraction of a tile
width.

The Sarsa algorithm in Figure 9.8 (using replace traces and the optional clearing)
readily solved this task, learning a near optimal policy within 100 episodes. Fig-
ure 9.10 shows the negative of the value function (the cost-to-go function) learned
on one run, using the parameters � = 0.9, " = 0, and ↵ = 0.05 (e.g., 0.5

m
). The initial

action values were all zero, which was optimistic (all true values are negative in this
task), causing extensive exploration to occur even though the exploration parameter,
", was 0. This can be seen in the middle-top panel of the figure, labeled “Step 428.”
At this time not even one episode had been completed, but the car has oscillated

9.4. CONTROL WITH FUNCTION APPROXIMATION 213

!1.2

Position

0.6

Step 428

Goal

Position

4

0

!
.0
7

.0
7

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

V
e
lo

c
it
y

Position

Position

Position

0

27

0

120

0

104

0

46

Episode 12

Episode 104 Episode 1000 Episode 9000

MOUNTAIN CAR

Figure 9.10: The mountain–car task (upper left panel) and the cost-to-go function
(� maxa q̂(s, a,✓)) learned during one run.

The reward in this problem is �1 on all time steps until the car moves past its goal
position at the top of the mountain, which ends the episode. There are three possible
actions: full throttle forward (+1), full throttle reverse (�1), and zero throttle (0).
The car moves according to a simplified physics. Its position, pt, and velocity, ṗt,
are updated by

pt+1
.
= bound

⇥
pt + ṗt+1

⇤

ṗt+1
.
= bound

⇥
ṗt + 0.001At � 0.0025 cos(3pt)

⇤
,

where the bound operation enforces �1.2  pt+1  0.5 and �0.07  ṗt+1  0.07.
When pt+1 reached the left bound, ṗt+1 was reset to zero. When it reached the
right bound, the goal was reached and the episode was terminated. Each episode
started from a random position and velocity uniformly chosen from these ranges. To
convert the two continuous state variables to binary features, we used gridtilings as
in Figure 9.5. We used ten 9 ⇥ 9 tilings, each o↵set by a random fraction of a tile
width.

The Sarsa algorithm in Figure 9.8 (using replace traces and the optional clearing)
readily solved this task, learning a near optimal policy within 100 episodes. Fig-
ure 9.10 shows the negative of the value function (the cost-to-go function) learned
on one run, using the parameters � = 0.9, " = 0, and ↵ = 0.05 (e.g., 0.5

m
). The initial

action values were all zero, which was optimistic (all true values are negative in this
task), causing extensive exploration to occur even though the exploration parameter,
", was 0. This can be seen in the middle-top panel of the figure, labeled “Step 428.”
At this time not even one episode had been completed, but the car has oscillated

Review of Course 3, Module 1
Prediction with Function Approximation

Video 1: Moving to
Parameterized Functions

• Using parameterized functions to represent value functions. From tables of values
to more general functions over states

• Goals:

• Understand how we can use parameterized functions to approximate values.

• Explain linear value function approximation.

• Recognize that the tabular case is a special case of linear value function
approximation

• Understand that there are many ways to parameterize an approximate value function.

V (s) ⇡ v⇡(s) ⇡ v̂(s,w)
.
= w>x(s)

.
=

nX

i=1

wi · xi(s)
d

inner product

transpose ith components

= 1.71

feature
vector

, x(s) =

2

66666666664

0
1
0
1
0
0
0
1

3

77777777775

, x : S ! Rnd

parameter
vector

w 2 Rn, e.g., w =

2

66666666664

2.1
0.01
�1.1
1.2
�0.1
0.01
4.93
0.5

3

77777777775

d

Video 2: Generalization and
Discrimination

• A key concept in machine learning. We cannot learn all the values separately (in fact
we wouldn't want to), so we have to make choices.

• Goals:

• Understand what is meant by generalization and discrimination

• Understand how generalization can be beneficial

• Explain why we want both generalization and discrimination from our function
approximation

Video 3: Framing Value Estimation as
Supervised Learning

• If we can setup the problem of learning a value function (policy evaluation) as a
supervised learning problem, then we can borrow methods from supervised learning
to do reinforcement learning with function approximation.

• Goals:

• Understand how value estimation can be framed as a supervised learning problem

• Recognize that not all function approximation methods are well suited for
reinforcement learning.

Video 4: Value Error

• We want to change the parameters of our function to estimate the value. We need
an objective function!

• Goals:

• Understand the mean-squared value error objective for policy evaluation

• Explain the role of the state distribution in the objective

State

Value

̂v(s, w)

vπ(s)

The Mean Squared Value Error Objective

[vπ(s) − ̂v(s, w)]2

The fraction of
time we spend in
when following
policy

s
π

μ(s)Mean Squared
Value Error ∑

s

Question: Why didn’t we use the Value Error in the tabular setting?

Video 5: Introducing Gradient Descent

• An algorithm for adapting the parameters of our estimate of the value function.

• Goals:

• Understand the idea of gradient descent

• Understand that gradient descent converges to stationary points

Question

• Why do we care about finding
stationary points? i.e., point w
where the gradient is zero

Video 6: Gradient Monte Carlo for
Policy Evaluation

• We use gradient descent idea to get an online algorithm to adjust the parameters of
our value function estimate

• Goals:

• Understand how to use gradient descent and stochastic gradient descent to
minimize value error

• Outline the gradient Monte Carlo algorithm for value estimation

Video 7: State Aggregation with
Monte Carlo

• So far we have said the value function could be any parametric function. Here we
use a particular one---state aggregation. Simple and effective. And we run an
experiment on a big Random Walk Problem

• Goals:

• Understand how state aggregation can be used to approximate the value function

• Apply Gradient Monte-Carlo with state aggregation

Video 8: Semi-gradient TD for
Policy Evaluation

• TD with function approximation. Now we can learn value functions, in continuous
state spaces AND update the value function parameters on every time-step!!

• Goals:

• Understand the TD-update for function approximation

• Outline the Semi-gradient TD algorithm for value estimation.

Question: What is different compared to Tabular TD(0)?

Video 9: Comparing TD and MC
with State Aggregation

• An experiment comparing TD and MC with a simple function approximation.

• Goals:

• Understand that TD converges to biased value estimates

• Understand that TD can learn faster than Gradient Monte Carlo.

Video 10: The Linear TD Algorithm
• Linear function functions are special. Most of the theory in RL is for the case of

linear function approximation. The algorithms can work well, if we have good
features.

• Goals:

• Derive the TD-update with linear function approximation

• Understand that tabular TD is a special case of linear semi-gradient TD

• Understand why we care about linear TD as a special case.

Video 11: The True Objective for TD

• A bit of theory about TD with function approximation. What does the algorithm
converge to?

• Goals:

• Understand the fixed point of linear TD

• Describe a theoretical guarantee on the mean squared value error at the TD fixed
point

Terminology

• We will do this on Wednesday

Any questions about the practice quiz?

Exercise Questions

• Why can’t we directly optimize the MSVE? We know the stochastic gradient descent
update would be the following

• Further, why doesn’t the TD fixed point minimize the MSVE?

min
w∈ℝd ∑

s

μ(s)[vπ(s) − ̂v(s, w)]2

wt + α[vπ(St) − ̂v(St, w)]∇ ̂v(St, w)

