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1. An agent observes the following two episodes from an MDP,

S0 = 0, A0 = 1, R1 = 1, S1 = 1, A1 = 1, R2 = 1

S0 = 0, A0 = 0, R1 = 0, S1 = 0, A1 = 1, R2 = 1, S2 = 1, A2 = 1, R3 = 1

and updates its deterministic model accordingly. What would the model output for the
following queries:

(a) Model(S = 0, A = 0):

(b) Model(S = 0, A = 1):

(c) Model(S = 1, A = 0):

(d) Model(S = 1, A = 1):

2. An agent is in a 4-state MDP, S = {1, 2, 3, 4}, where each state has two actions A = {1, 2}.
Assume the agent saw the following trajectory,

S0 = 1, A0 = 2, R1 = �1,

S1 = 1, A1 = 1, R2 = 1,

S2 = 2, A2 = 2, R3 = �1,

S3 = 2, A3 = 1, R4 = 1,

S4 = 3, A4 = 1, R5 = 100,

S5 = 4

and uses Tabular Dyna-Q with 5 planning steps for each interaction with the environment.

(a) Once the agent sees S5, how many Q-learning updates has it done with real experience?
How many updates has it done with simulated experience?

(b) Which of the following are possible (or not possible) simulated transitions {S,A,R, S 0}
given the above observed trajectory with a deterministic model and random search control?

i. {S = 1, A = 1, R = 1, S 0 = 2}
ii. {S = 2, A = 1, R = �1, S 0 = 3}
iii. {S = 2, A = 2, R = �1, S 0 = 2}
iv. {S = 1, A = 2, R = �1, S 0 = 1}
v. {S = 3, A = 1, R = 100, S 0 = 5}
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3. Modify the Tabular Dyna-Q algorithm so that it uses Expected Sarsa instead of Q-learning.
Assume that the target policy is ✏-greedy. What should we call this algorithm?

164 Chapter 8: Planning and Learning with Tabular Methods

n iterations (Steps 1–3) of the Q-planning algorithm. In the pseudocode algorithm for
Dyna-Q in the box below, Model(s, a) denotes the contents of the (predicted next state
and reward) for state–action pair (s, a). Direct reinforcement learning, model-learning,
and planning are implemented by steps (d), (e), and (f), respectively. If (e) and (f) were
omitted, the remaining algorithm would be one-step tabular Q-learning.

Tabular Dyna-Q

Initialize Q(s, a) and Model(s, a) for all s � S and a � A(s)
Loop forever:

(a) S � current (nonterminal) state
(b) A � �-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S�

(d) Q(S, A) � Q(S, A) + �
�
R + � maxa Q(S�, a) � Q(S, A)

�

(e) Model(S, A) � R, S� (assuming deterministic environment)
(f) Loop repeat n times:

S � random previously observed state
A � random action previously taken in S
R, S� � Model(S, A)
Q(S, A) � Q(S, A) + �

�
R + � maxa Q(S�, a) � Q(S, A)

�

Example 8.1: Dyna Maze Consider the simple maze shown inset in Figure 8.2. In
each of the 47 states there are four actions, up, down, right, and left, which take the
agent deterministically to the corresponding neighboring states, except when movement
is blocked by an obstacle or the edge of the maze, in which case the agent remains where
it is. Reward is zero on all transitions, except those into the goal state, on which it is +1.
After reaching the goal state (G), the agent returns to the start state (S) to begin a new
episode. This is a discounted, episodic task with � = 0.95.

The main part of Figure 8.2 shows average learning curves from an experiment in
which Dyna-Q agents were applied to the maze task. The initial action values were zero,
the step-size parameter was � = 0.1, and the exploration parameter was � = 0.1. When
selecting greedily among actions, ties were broken randomly. The agents varied in the
number of planning steps, n, they performed per real step. For each n, the curves show
the number of steps taken by the agent to reach the goal in each episode, averaged over 30
repetitions of the experiment. In each repetition, the initial seed for the random number
generator was held constant across algorithms. Because of this, the first episode was
exactly the same (about 1700 steps) for all values of n, and its data are not shown in
the figure. After the first episode, performance improved for all values of n, but much
more rapidly for larger values. Recall that the n = 0 agent is a nonplanning agent, using
only direct reinforcement learning (one-step tabular Q-learning). This was by far the
slowest agent on this problem, despite the fact that the parameter values (� and �) were
optimized for it. The nonplanning agent took about 25 episodes to reach (�-)optimal
performance, whereas the n = 5 agent took about five episodes, and the n = 50 agent
took only three episodes.

4. Consider an MDP with two states {1, 2} and two possible actions: {stay, switch}. The state
transitions are deterministic, the state does not change if the action is “stay” and the state
switches if the action is “switch”. However, rewards are randomly distributed:

P (R |S = 1, A = stay) =

(
0 w.p. 0.4

1 w.p. 0.6
, P (R |S = 1, A = switch) =

(
0 w.p. 0.5

1 w.p. 0.5

P (R |S = 2, A = stay) =

(
0 w.p. 0.6

1 w.p. 0.4
, P (R |S = 2, A = switch) =

(
0 w.p. 0.5

1 w.p. 0.5

(a) How might you learn the reward model? Hint: think about how probabilities are estimated.
For example, what if you were to estimate the probability of a coin landing on heads? If
you observed 10 coin flips with 8 heads and 2 tails, then you can estimate the probabilities
by counting: p(heads) = 8

10 = 0.8 and p(tails) = 2
10 = 0.2.

(b) Modify the tabular Dyna-Q algorithm to handle this MDP with stochastic rewards.
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