# Course 2, Module 5 Planning, Learning & Acting

CMPUT 397 Fall 2019

## Any questions about course admin?



• http://www.tricider.com/brainstorming/3LEf4A3IOPB

#### Mini-test

- Q1) Given a choice between two actions, the agent should always pick the one with larger \_\_\_\_\_.
  - a) reward
  - b) return
  - c) value
- **Q2)** The goal of reinforcement learning can be seen as producing a \_\_\_\_\_, which maps from \_\_\_\_\_ to \_\_\_\_\_.
- Q3) T F If a policy  $\pi$  is greedy with respect to its own value function,  $V\pi$ , then it is an optimal policy.

#### Tabular Dyna-Q

Number of actions taken: 0

|      |  |  |  | Ε |
|------|--|--|--|---|
|      |  |  |  |   |
|      |  |  |  |   |
|      |  |  |  |   |
|      |  |  |  |   |
| •••• |  |  |  |   |

Number of actions taken: 184



Number of steps planned: 100

Number of actions taken: 185



### Worksheet Questions

1. An agent observes the following two episodes from an MDP,

$$S_0 = 0, A_0 = 1, R_1 = 1, S_1 = 1, A_1 = 1, R_2 = 1$$

$$S_0 = 0, A_0 = 0, R_1 = 0, S_1 = 0, A_1 = 1, R_2 = 1, R_2 = 1, R_2 = 1, R_3 = 1$$

and updates its deterministic model accordingly. What would the model output for the following queries:

- (a) Model(S = 0, A = 0):
- (b) Model(S = 0, A = 1):
- (c) Model(S = 1, A = 0):
- (d) Model(S = 1, A = 1):

2. An agent is in a 4-state MDP,  $S = \{1, 2, 3, 4\}$ , where each state has two actions  $A = \{1, 2\}$ . Assume the agent saw the following trajectory,

$$S_0 = 1, A_0 = 2, R_1 = -1,$$
  
 $S_1 = 1, A_1 = 1, R_2 = 1,$   
 $S_2 = 2, A_2 = 2, R_3 = -1,$   
 $S_3 = 2, A_3 = 1, R_4 = 1,$   
 $S_4 = 3, A_4 = 1, R_5 = 100,$   
 $S_5 = 4$ 

and uses Tabular Dyna-Q with 5 planning steps for each interaction with the environment.

(a) Once the agent sees  $S_5$ , how many Q-learning updates has it done with **real experience**? How many updates has it done with **simulated experience**?

$$S_0 = 1, A_0 = 2, R_1 = -1,$$
  
 $S_1 = 1, A_1 = 1, R_2 = 1,$   
 $S_2 = 2, A_2 = 2, R_3 = -1,$   
 $S_3 = 2, A_3 = 1, R_4 = 1,$   
 $S_4 = 3, A_4 = 1, R_5 = 100,$   
 $S_5 = 4$ 

(b) Which of the following are possible (or not possible) simulated transitions  $\{S, A, R, S'\}$  given the above observed trajectory with a deterministic model and random search control?

i. 
$$\{S=1, A=1, R=1, S'=2\}$$

ii. 
$$\{S=2, A=1, R=-1, S'=3\}$$

iii. 
$$\{S=2, A=2, R=-1, S'=2\}$$

iv. 
$$\{S=1, A=2, R=-1, S'=1\}$$

v. 
$$\{S = 3, A = 1, R = 100, S' = 5\}$$