Statistics Refresher

CMPUT 397 Fall 2019

Reminders: Sept 9, 2019

- Schedule updated on github pages (https://marthawhite.github.io/rlcourse/schedule.html)
- Practice Quiz and Discussion Question due tomorrow (participation marks)
- Graded Notebook due on Friday
- **Usually**: Practice Quiz and Discussion Question **due on Sunday** and Graded Notebook **due on Friday**:
 - Exception this week to make up for class starting on Wednesday
 - Exception for Graded Quizzes and Graded Peer Review

Practice Quiz participation marks

- 10 marks in total, with 11 weeks of Practice Quizzes
- You have to complete the quiz and submit a discussion question to get the 1%
- You get 1 mulligan (i.e., you can miss one and still get the full 10%)

Modeling random outcomes

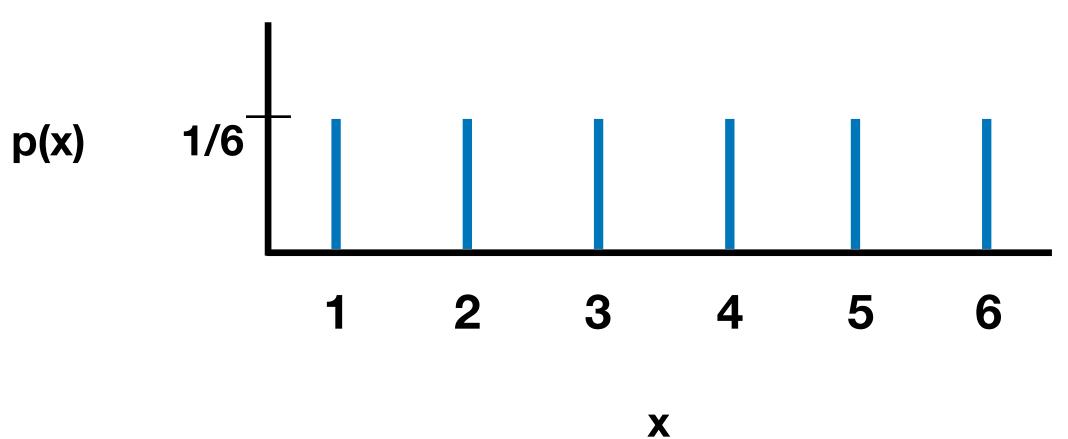
- Imagine you would like to model stochastic outcomes (or dynamics), such as the outcome of a dice role
- We need to define:
 - the possible set of outcomes (e.g., 1, 2, 3, 4, 5, 6)
 - the probability of each outcome (e.g., 1/6 for each)

Random Variable

- (Informally) A random variable X is a variable with stochastic values
- Depends on underlying random phenomena
- Examples:
 - X = the outcome of a dice roll
 - X = the temperature tomorrow

Probability Mass Function

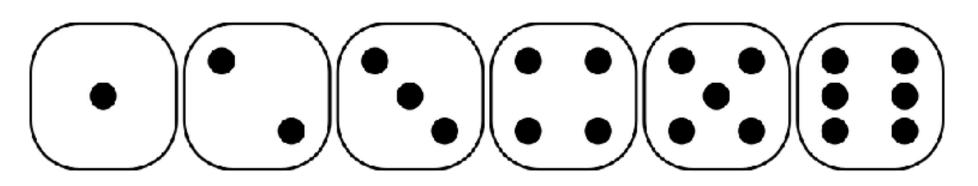
- Outcome space (or sample space) is {1, 2, 3, 4, 5, 6}
- p(x) = 1/6 for all x in $\{1, 2, 3, 4, 5, 6\}$
- Sometimes we write: P(X = x) = 1/6



Random Variable: A variable that can take one of many possible values.

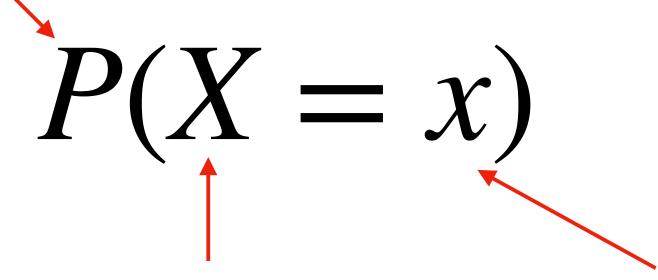
$$X = (\bullet \bullet)$$

Sample space: The set of possible values for a random variable.



Notation

Probability!



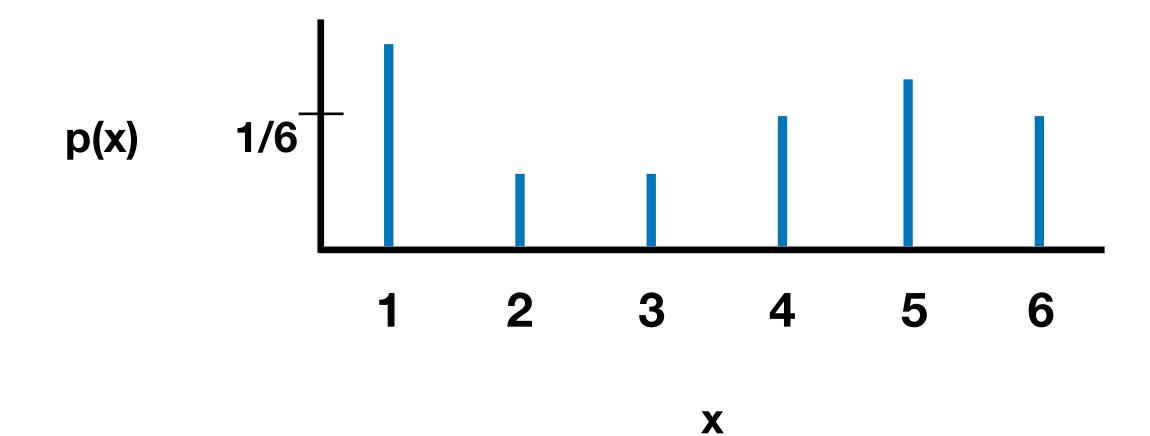
"The probability that the random variable 'X' takes the value 'x'"

The name of the random variable

One of the elements in the sample space for X

Another PMF

- Outcome space is {1, 2, 3, 4, 5, 6}
- What does this PMF say?



Properties of the PMF

1.
$$p: \mathcal{X} \to [0, 1]$$

i.e., $0 \le p(x) \le 1$

$$\sum_{x \in \mathcal{X}} p(x) = 1$$

Expectation and Variance

• The Expected Value is defined as $\ \mathbb{E}[X] = \sum_{x \in \mathcal{X}} p(x) x$

• The Variance is defined as $\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$ $= \sum_{x \in \mathcal{X}} p(x)(x - \mathbb{E}[X])^2$

Back to the dice example

• The expected value of a dice roll with 1/6 probability for each outcome is 3.5

• The variance is
$$\sum_{x=1}^{6} p(x)(x - \mathbb{E}[X])^2 = \frac{1}{6} \sum_{x=1}^{6} (x - 3.5)^2$$
$$= \frac{17.5}{6} \approx 2.92$$

Exercise: Imagine you can manufacture the dice to give biased probabilities.
 Then what probability values would give a lower variance outcome?
 How about a higher variance outcome?

Another example

- Imagine that you are a medical doctor, prescribing treatments to patients
- You give the treatment for many patients and note the outcome (X = treatment outcome). You find that you have the following probabilities:

$$p(x) = \begin{cases} 0.2 & \text{if } x \text{ is Bad} \\ 0.5 & \text{if } x \text{ is Neutral} \\ 0.3 & \text{if } x \text{ is Good.} \end{cases}$$

• But that's pretty stochastic...

How can we make this less stochastic?

- What if we knew something about the patient?
- What information could help?

Conditional Probabilities

- X = outcome of treatment
- Y = age of the patient
- P(X = Good | Y = 22) is a different value than P(X = Good | Y = 78)

$$P(X = x \mid Y = y)$$

The name of another random variable

One of the elements in the sample space for Y

"The probability that the random variable 'X' takes the value 'x', given that the random variable 'Y' has taken the value 'y'"

Another example of conditional probabilities

- Often the value of a random variable is dependent on or correlated with another random variable
- Example: A store restocks on Wednesday, so the probability that they have pencils in stock depends on the day of the week

1	Wed	Pencil Delivery!
2	Thu	
3	Fri	
4	Sat	
5	Sun	
6	Mon	
7	Tues	

 $P(\text{Pencils in stock} \mid \text{Tuesday}) = 0.2$ $P(\text{Pencils in stock} \mid \text{Wednesday}) = 1.0$

Same rules for conditional probabilities as for unconditioned probabilities

1.
$$p(\cdot|Y=y): \mathcal{X} \to [0,1]$$

$$\sum_{x \in \mathcal{X}} p(x|Y=y) = 1$$

e.g. If $P(\text{Pencils in stock} \mid \text{Tuesday}) = 0.2$, then $P(\text{Pencils NOT in stock} \mid \text{Tuesday}) = 0.8$

Independence and Conditional Independence

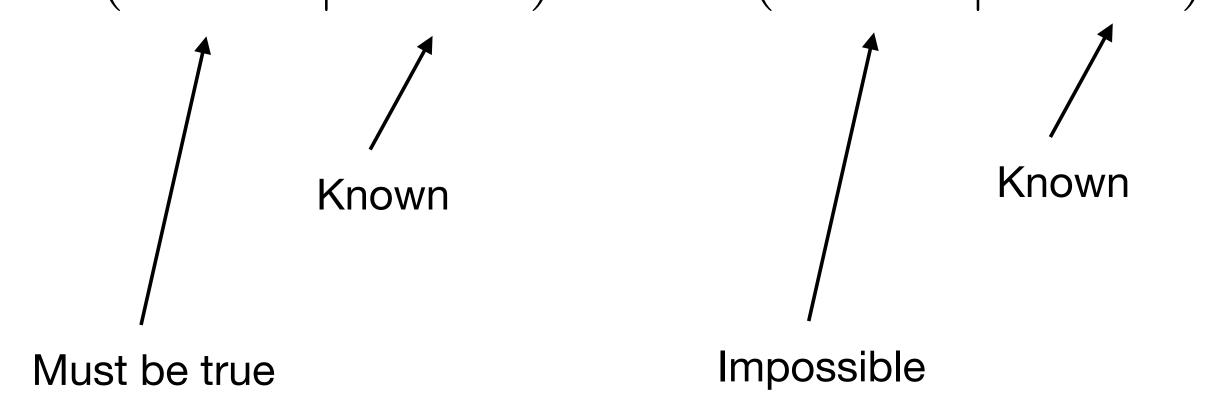
- X and Y are independent if and only if p(x, y) = p(x) p(y)
 - equivalently, if p(x | y) = p(x)
 - recall: p(x, y) = p(x | y) p(y)
- X and Y are conditionally independent, given Z = z, if and only if $p(x, y \mid z) = p(x \mid z) p(y \mid z)$
- Exercise: Show that this definition means E[X | Y = y] = E[X] if X and Y are independent

Exercise 1

- Find $P(X = 3 \mid X = 3)$ and $P(X = 9 \mid X = 4)$.
- You flip a coin and get two heads in a row. What is the probability that your third coin flip also results in heads?
- You roll two standard dice. One of the die shows a 3.
 What is the probability that the sum of the dice is greater than 7?

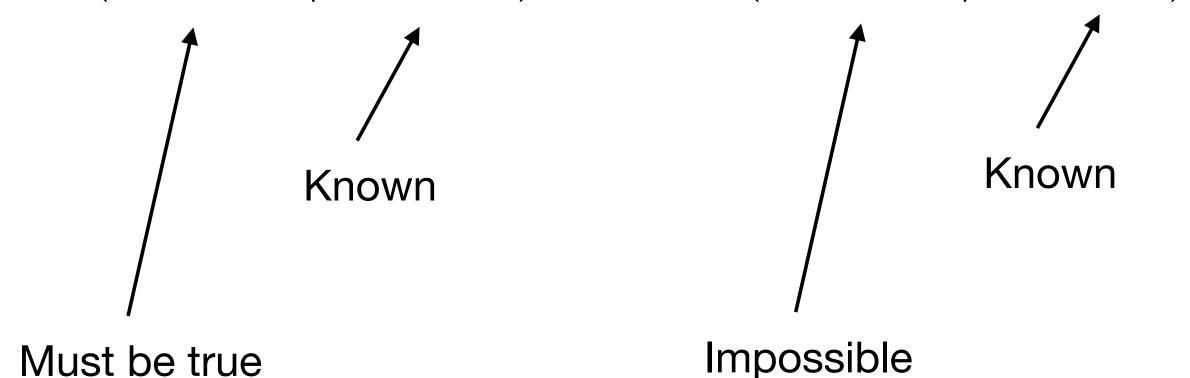
Exercise 2

• Find $P(X = 3 \mid X = 3)$ and $P(X = 9 \mid X = 4)$.



Exercise 2: Answer

• Find $P(X = 3 \mid X = 3)$ and $P(X = 9 \mid X = 4)$.



$$P(X = 3 \mid X = 3) = 1$$
 $P(X = 9 \mid X = 4) = 0$

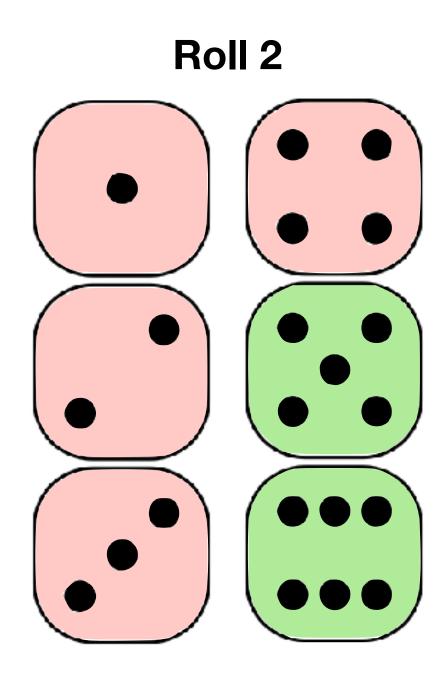
Exercise 3

 You flip a coin and get two heads in a row. What is the probability that your third coin flip also results in heads?

Exercise 4

• You roll two standard dice. One of the die shows a 3. What is the probability that the sum of the dice is greater than 7?

Roll 1



Worksheet Exercise

- Adam and Martha propose a simple dice game to you. You can throw a die up to two
 times, and they will reward you with the amount equivalent to the face value of the die. If
 you throw a die once and 3 comes up, you can choose to take \$3 or throw again. If you
 choose to throw again and 2 comes up, you earn only \$2. The amount you earn is not
 additive and you only earn the amount of your last roll.
 - Suppose in your first roll, the die comes up as a 1. What is the expected amount you would earn in your second roll?
 - For what values in your first roll should you re-roll the die?
 - What is the expected amount you would earn in this game, if you play optimally?