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Any questions about course admin?



• Link for questions: 


• http://www.tricider.com/brainstorming/35B8Mn3NZ5B

http://www.tricider.com/brainstorming/35B8Mn3NZ5B


Review of Course 2, Module 2 
TD Learning



Video 1: What is Temporal Difference 
(TD)?

• One of the central ideas of Reinforcement Learning! We focus on policy evaluation first: 
learning vπ. 


• Updating a guess from a guess: Bootstrapping. It means we can learning during the 
episode. No waiting till the end of an episode! 

• Goals:


• Define temporal-difference learning


• Define the temporal-difference error


• And understand the TD(0) algorithm.



Video 2: The Advantages of Temporal 
Difference Learning

• How TD has some of the benefits of MC. Some of the benefits of DP. AND some benefits unique 
to TD


• Goals:


• Understand the benefits of learning online with TD


• Identify key advantages of TD methods over Dynamic Programming and Monte Carlo methods


• do not need a model


• update the value function on every time-step


• typically learns faster than Monte Carlo methods



Video 3: Comparing TD and Monte Carlo

• Worked through an example using TD and Monte Carlo to learn vπ. We looked at 
how the updates happened on each step. And final performance via learning curves


• Goals:


• Identify the empirical benefits of TD learning.







Terminology Review
• In TD learning there are no models, YES bootstrapping, YES learning during the 

episode


• TD methods update the value estimates on a step-by-step basis. We do not wait 
until the end of an episode to update the values of each state.


• TD methods use Bootstrapping: using the estimate of the value in the next state to 
update the value in the current state: V(S) ← V(S) + ⍺[R + ƔV(S') - V(S)]


• TD is a sample update method: update involves the value of single sample 
successor state


• An expected update requires the complete distribution over all possible next states


• TD and MC are sample update methods. Dynamic programming uses expected 
updates

TD-error



Dynamic programming
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Simple Monte Carlo
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Simplest TD Method
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Worksheet Question

Worksheet 7
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October 16, 2019

5. (Exercise 6.7 S&B) Design an o↵-policy version of the TD(0) update that can be used with

arbitrary target policy ⇡ and covering behavior policy b, using at each step t the importance

sampling ratio ⇢t:t (5.3).

6. In each of the following environments, assume that the reward is bounded so that Rmin = 0

and Rmax = 1. Find the maximum and minimum possible TD error �0 = R1 + �V (S1) �
V (S0).

(a) If the environment is undiscounted and episodic, with � = 1 and horizon T = 10.

(b) If the environment is discounted and continuing, with � = 0.5.

7. Modify the Tabular TD(0) algorithm for estimating v⇡, to estimate q⇡.

120 Chapter 6: Temporal-Di�erence Learning

where Gt is the actual return following time t, and � is a constant step-size parameter (c.f.,
Equation 2.4). Let us call this method constant-� MC. Whereas Monte Carlo methods
must wait until the end of the episode to determine the increment to V (St) (only then is
Gt known), TD methods need to wait only until the next time step. At time t + 1 they
immediately form a target and make a useful update using the observed reward Rt+1 and
the estimate V (St+1). The simplest TD method makes the update

V (St) � V (St) + �
�
Rt+1 + �V (St+1) � V (St)

�
(6.2)

immediately on transition to St+1 and receiving Rt+1. In e�ect, the target for the Monte
Carlo update is Gt, whereas the target for the TD update is Rt+1 + �V (St+1). This TD
method is called TD(0), or one-step TD, because it is a special case of the TD(�) and
n-step TD methods developed in Chapter 12 and Chapter 7. The box below specifies
TD(0) completely in procedural form.

Tabular TD(0) for estimating v�

Input: the policy � to be evaluated
Algorithm parameter: step size � � (0, 1]
Initialize V (s), for all s � S+, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A � action given by � for S
Take action A, observe R, S�

V (S) � V (S) + �
�
R + �V (S�) � V (S)

�

S � S�

until S is terminal

Because TD(0) bases its update in part on an existing estimate, we say that it is a
bootstrapping method, like DP. We know from Chapter 3 that

v�(s)
.
= E�[Gt | St =s] (6.3)

= E�[Rt+1 + �Gt+1 | St =s] (from (3.9))

= E�[Rt+1 + �v�(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an estimate
because the expected value in (6.3) is not known; a sample return is used in place of the
real expected return. The DP target is an estimate not because of the expected values,
which are assumed to be completely provided by a model of the environment, but because
v�(St+1) is not known and the current estimate, V (St+1), is used instead. The TD target
is an estimate for both reasons: it samples the expected values in (6.4) and it uses the
current estimate V instead of the true v�. Thus, TD methods combine the sampling of

8. (Challenge Question) In this question we consider the variance of the TD target, Rt+1 +

�V (St+1) compared to the variance of the Monte Carlo target, Gt. Let’s assume an idealized

setting, where we have found a V that exactly equals v⇡. We can show that, in this case,

the variance of the Monte Carlo target is greater than or equal to the variance of the TD

target. Note that variance of the targets is a factor in learning speed, where lower variance

targets typically allow for faster learning. Show that the Monte Carlo target has at least

as high of variance as the TD target, using the following decomposition, called the Law of

Total Variance

Var(Gt|St = s) = E[Var(Gt|St = s, St+1)] + Var(E[Gt|St = s, St+1]|St = s).

2
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