
Course 1, Module 5 
Dynamic Programming

CMPUT 397

Fall 2019

Admin: Oct 4, 2019

• If you are auditing: send me an email and I can add you to eclass

• A proposed modification: discussion question due on Tuesday, rather than Sunday

• more mental load for you, since multiple days where you have to submit

• but, gives you more time to ask a meaningful question

Questions 1 and 2Worksheet 5
CMPUT 397

October 4, 2019

1. In iterative policy evaluation, we seek to find the value function for a policy ⇡ by applying
the Bellman equation many times to generate a sequence of value functions vk that will
eventually converge to the true value function v⇡. How can we modify the update below to
generate a sequence of action value functions qk?

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a) [r + �vk(s
0)]

2. A deterministic policy ⇡(s) outputs an action a 2 A directly. A stochastic policy ⇡(·|s)
outputs the probabilities for all actions. How can you represent a deterministic policy as a
stochastic policy?

1

Worksheet 5
CMPUT 397

October 4, 2019

1. In iterative policy evaluation, we seek to find the value function for a policy ⇡ by applying
the Bellman equation many times to generate a sequence of value functions vk that will
eventually converge to the true value function v⇡. How can we modify the update below to
generate a sequence of action value functions qk?

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a) [r + �vk(s
0)]

2. A deterministic policy ⇡(s) outputs an action a 2 A = {a1, a2, . . . , ak} directly. More gener-
ally, a policy ⇡(·|s) outputs the probabilities for all actions: ⇡(·|s) = [⇡(a1|s), ⇡(a2|s), . . . , ⇡(ak|s).
How can you write a deterministic policy in this form? Let ⇡(s) = ai and define ⇡(·|s).

3. (Exercise 4.1 S&B) Consider the 4x4 gridworld below, where actions that would take the
agent o↵ the grid leave the state unchanged. The task is episodic with � = 1 and the
terminal states are the shaded blocks. Using the precomputed values for the equiprobable
policy below, what is q⇡(11, down)? What is q⇡(7, down)?

4. (Exercise 4.1 from S&B) Suppose in the above gridworld where a new state 15 is added
to the gridworld just below state 13, and its actions, left, up, right, and dowm, take the
agent to the states 12, 13, 14, and 15, respectively. Assume that the transitions from the
original states are unchanged. What, then is, v⇡(15) for the equiprobable random policy?
Now suppose the dynamics of state 13 are also changed, such that action down from state
13 takes the agent to the new state 15. What is v⇡(15) for the equiprobable random policy
in this case?

1

Challenge Question 2
The policy iteration algorithm on
page 80 has a subtle bug in that
it may never terminate if the
policy continually switches
between two or more policies
that are equally good. This is ok
for pedagogy, but not for actual
use. Modify the pseudocode so
that convergence is guaranteed.
Note that there is more than one
approach to solve this problem.

Worksheet 5
CMPUT 397

October 2, 2019

5. (Exercise 4.4 S&B) The policy iteration algorithm on page 80 has a subtle bug in that it
may never terminate if the policy continually switches between two or more policies that
are equally good. This is ok for pedagogy, but not for actual use. Modify the pseudocode
so that convergence is guaranteed. Note that there is more than one approach to solve this
problem.

80 Chapter 4: Dynamic Programming

s 2 S, illustrating policy improvement. Although in this case the new policy �� happens
to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, �, has been improved using v� to yield a better policy, ��, we can then
compute v�� and improve it again to yield an even better ���. We can thus obtain a
sequence of monotonically improving policies and value functions:

�0
E�� v�0

I�� �1
E�� v�1

I�� �2
E�� · · · I�� ��

E�� v�,

where
E�� denotes a policy evaluation and

I�� denotes a policy improvement . Each
policy is guaranteed to be a strict improvement over the previous one (unless it is already
optimal). Because a finite MDP has only a finite number of policies, this process must
converge to an optimal policy and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is
given in the box below. Note that each policy evaluation, itself an iterative computation,
is started with the value function for the previous policy. This typically results in a great
increase in the speed of convergence of policy evaluation (presumably because the value
function changes little from one policy to the next).

Policy Iteration (using iterative policy evaluation) for estimating � � ��

1. Initialization
V (s) 2 R and �(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Loop:

� � 0
Loop for each s 2 S:

v � V (s)
V (s) �

�
s�,r p(s�, r |s, �(s))

�
r + �V (s�)

�

� � max(�, |v � V (s)|)
until � < � (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable � true
For each s 2 S:

old-action � �(s)
�(s) � argmaxa

�
s�,r p(s�, r |s, a)

�
r + �V (s�)

�

If old-action �= �(s), then policy-stable � false
If policy-stable, then stop and return V � v� and � � ��; else go to 2

3

Challenge Question 1aWorksheet 5
CMPUT 397

October 4, 2019

5. (Challenge Question) A gambler has the opportunity to make bets on the outcomes of
a sequence of coin flips. If the coin comes up heads, she wins as many dollars as she has
staked on that flip; if it is tails, she loses her stake. The game ends when the gambler
wins by reaching her goal of $100, or loses by running out of money. On each flip, the
gambler must decide what portion of her capital to stake, in integer numbers of dollars.
This problem can be formulated as an undiscounted, episodic, finite MDP. The state is the
gambler’s capital, s 2 {1, 2, ..., 99} and the actions are stakes, a 2 {0, 1, ...,min(s, 100�s)}.
The reward is +1 when reaching the goal of $100 and zero on all other transitions. The
probability of seeing heads is ph = 0.4.

(a) What does the value of a state mean in this problem? For example, in a gridworld where
the value of 1 per step, the value represents the expected number of steps to goal. What
does the value of state mean in the gambler’s problem? Think about the minimum and
maximum possible values, and think about the values of state 50 (which is 0.4) and state
99 (which is near 0.95).

(b) Modify the pseudocode for value iteration to more e�ciently solve this specific problem,
by exploiting your knowledge of the dynamics. Hint: Not all states transition to every

other state. For example, can you transition from state 1 to state 99?

4.4. Value Iteration 83

case is when policy evaluation is stopped after just one sweep (one update of each state).
This algorithm is called value iteration. It can be written as a particularly simple update
operation that combines the policy improvement and truncated policy evaluation steps:

vk+1(s)
.
= max

a
E[Rt+1 + �vk(St+1) | St =s, At =a]

= max
a

X

s�,r

p(s�, r |s, a)
�
r + �vk(s�)

�
, (4.10)

for all s 2 S. For arbitrary v0, the sequence {vk} can be shown to converge to v� under
the same conditions that guarantee the existence of v�.

Another way of understanding value iteration is by reference to the Bellman optimality
equation (4.1). Note that value iteration is obtained simply by turning the Bellman
optimality equation into an update rule. Also note how the value iteration update is
identical to the policy evaluation update (4.5) except that it requires the maximum to be
taken over all actions. Another way of seeing this close relationship is to compare the
backup diagrams for these algorithms on page 59 (policy evaluation) and on the left of
Figure 3.4 (value iteration). These two are the natural backup operations for computing
v� and v�.

Finally, let us consider how value iteration terminates. Like policy evaluation, value
iteration formally requires an infinite number of iterations to converge exactly to v�. In
practice, we stop once the value function changes by only a small amount in a sweep.
The box below shows a complete algorithm with this kind of termination condition.

Value Iteration, for estimating � � ��

Algorithm parameter: a small threshold � > 0 determining accuracy of estimation
Initialize V (s), for all s 2 S+, arbitrarily except that V (terminal) = 0

Loop:
| � � 0
| Loop for each s 2 S:
| v � V (s)
| V (s) � maxa

�
s�,r p(s�, r |s, a)

�
r + �V (s�)

�

| � � max(�, |v � V (s)|)
until � < �

Output a deterministic policy, � � ��, such that
�(s) = argmaxa

�
s�,r p(s�, r |s, a)

�
r + �V (s�)

�

Value iteration e�ectively combines, in each of its sweeps, one sweep of policy evaluation
and one sweep of policy improvement. Faster convergence is often achieved by interposing
multiple policy evaluation sweeps between each policy improvement sweep. In general,
the entire class of truncated policy iteration algorithms can be thought of as sequences
of sweeps, some of which use policy evaluation updates and some of which use value
iteration updates. Because the max operation in (4.10) is the only di�erence between

2

Worksheet 5
CMPUT 397

October 4, 2019

5. (Challenge Question) A gambler has the opportunity to make bets on the outcomes of
a sequence of coin flips. If the coin comes up heads, she wins as many dollars as she has
staked on that flip; if it is tails, she loses her stake. The game ends when the gambler
wins by reaching her goal of $100, or loses by running out of money. On each flip, the
gambler must decide what portion of her capital to stake, in integer numbers of dollars.
This problem can be formulated as an undiscounted, episodic, finite MDP. The state is the
gambler’s capital, s 2 {1, 2, ..., 99} and the actions are stakes, a 2 {0, 1, ...,min(s, 100�s)}.
The reward is +1 when reaching the goal of $100 and zero on all other transitions. The
probability of seeing heads is ph = 0.4.

(a) What does the value of a state mean in this problem? For example, in a gridworld where
the value of 1 per step, the value represents the expected number of steps to goal. What
does the value of state mean in the gambler’s problem? Think about the minimum and
maximum possible values, and think about the values of state 50 (which is 0.4) and state
99 (which is near 0.95).

(b) Modify the pseudocode for value iteration to more e�ciently solve this specific problem,
by exploiting your knowledge of the dynamics. Hint: Not all states transition to every

other state. For example, can you transition from state 1 to state 99?

4.4. Value Iteration 83

case is when policy evaluation is stopped after just one sweep (one update of each state).
This algorithm is called value iteration. It can be written as a particularly simple update
operation that combines the policy improvement and truncated policy evaluation steps:

vk+1(s)
.
= max

a
E[Rt+1 + �vk(St+1) | St =s, At =a]

= max
a

X

s�,r

p(s�, r |s, a)
�
r + �vk(s�)

�
, (4.10)

for all s 2 S. For arbitrary v0, the sequence {vk} can be shown to converge to v� under
the same conditions that guarantee the existence of v�.

Another way of understanding value iteration is by reference to the Bellman optimality
equation (4.1). Note that value iteration is obtained simply by turning the Bellman
optimality equation into an update rule. Also note how the value iteration update is
identical to the policy evaluation update (4.5) except that it requires the maximum to be
taken over all actions. Another way of seeing this close relationship is to compare the
backup diagrams for these algorithms on page 59 (policy evaluation) and on the left of
Figure 3.4 (value iteration). These two are the natural backup operations for computing
v� and v�.

Finally, let us consider how value iteration terminates. Like policy evaluation, value
iteration formally requires an infinite number of iterations to converge exactly to v�. In
practice, we stop once the value function changes by only a small amount in a sweep.
The box below shows a complete algorithm with this kind of termination condition.

Value Iteration, for estimating � � ��

Algorithm parameter: a small threshold � > 0 determining accuracy of estimation
Initialize V (s), for all s 2 S+, arbitrarily except that V (terminal) = 0

Loop:
| � � 0
| Loop for each s 2 S:
| v � V (s)
| V (s) � maxa

�
s�,r p(s�, r |s, a)

�
r + �V (s�)

�

| � � max(�, |v � V (s)|)
until � < �

Output a deterministic policy, � � ��, such that
�(s) = argmaxa

�
s�,r p(s�, r |s, a)

�
r + �V (s�)

�

Value iteration e�ectively combines, in each of its sweeps, one sweep of policy evaluation
and one sweep of policy improvement. Faster convergence is often achieved by interposing
multiple policy evaluation sweeps between each policy improvement sweep. In general,
the entire class of truncated policy iteration algorithms can be thought of as sequences
of sweeps, some of which use policy evaluation updates and some of which use value
iteration updates. Because the max operation in (4.10) is the only di�erence between

2

