Course 1, Module 5
Dynamic Programming

CMPUT 397
Fall 2019

Admin: Oct 4, 2019

* |f you are auditing: send me an email and | can add you to eclass
e A proposed modification: discussion question due on Tuesday, rather than Sunday
e more mental load for you, since multiple days where you have to submit

e but, gives you more time to ask a meaningful question

Questions 1 and 2

1. In iterative policy evaluation, we seek to find the value function for a policy m by applying
the Bellman equation many times to generate a sequence of value functions v, that will
eventually converge to the true value function v,. How can we modify the update below to
ogenerate a sequence of action value functions g;?

Vpt1(8) = Zﬂ(a\s) Zp(s’, rls,a) [r 4+ yu(s')]

2. A deterministic policy 7(s) outputs an action a € A = {aq, a9, ..., a;} directly. More gener-
ally, a policy 7(-|s) outputs the probabilities for all actions: 7 (-|s) = |[7(a1|s), w(asls), ..., 7(ag|s).
How can you write a deterministic policy in this form? Let 7(s) = a; and define 7 (-|s).

Challenge Question 2

The policy iteration algorithm on
page 80 has a subtle bug in that
it may never terminate if the
policy continually switches
between two or more policies
that are equally good. This is ok
for pedagogy, but not for actual
use. Modify the pseudocode so
that convergence is guaranteed.
Note that there is more than one

approach to solve this problem.

Policy Iteration (using iterative policy evaluation) for estimating 7 ~ 7,

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation
Loop:
A+ 0
Loop for each s € o:
v+ V{(s)
V(s) < > g (s 7|s,7(s)) 4+ V(s
A + max(A, v — V(s)|)

until A < 6 (a small positive number determining the accuracy of estimation)

3. Policy Improvement

policy-stable <— true
For each s € 3:
old-action < m(s)
m(s) < argmax,), .p(s',7|s,a) 4+ V(s
If old-action # 7(s), then policy-stable < false
If policy-stable, then stop and return V ~ v, and 7 = m,; else go to 2

Challenge Question 1a

5. (Challenge Question) A gambler has the opportunity to make bets on the outcomes of
a sequence of coin flips. If the coin comes up heads, she wins as many dollars as she has
staked on that flip; if it is tails, she loses her stake. The game ends when the gambler
wins by reaching her goal of $100, or loses by running out of money. On each flip, the
cambler must decide what portion of her capital to stake, in integer numbers of dollars.
This problem can be formulated as an undiscounted, episodic, finite MDP. The state is the
gambler’s capital, s € {1,2,...,99} and the actions are stakes, a € {0, 1, ..., min(s, 100 —s)}.
The reward is +1 when reaching the goal of $100 and zero on all other transitions. The
probability of seeing heads is p;, = 0.4.

(a) What does the value of a state mean in this problem? For example, in a gridworld where
the value of 1 per step, the value represents the expected number of steps to goal. What
does the value of state mean in the gambler’s problem? Think about the minimum and

maximum possible values, and think about the values of state 50 (which is 0.4) and state
99 (which is near 0.95).

(b) Modify the pseudocode for value iteration to more efficiently solve this specific problem,

by exploiting your knowledge of the dynamics. Hint: Not all states transition to every
other state. For example, can you transition from state 1 to state 997

Value Iteration, for estimating m =~ m,

Algorithm parameter: a small threshold 6 > 0 determining accuracy of estimation
Initialize V' (s), for all s € 81, arbitrarily except that V (terminal) = 0

Loop:
A+ 0
Loop for each s € o:
v+ V(s)
V(s) < max,), .p(s',r|s,a) 4+ V()]
A +— max(A, |lv—V(s)|)
until A < 6

Output a deterministic policy, m ~ m,, such that
7(s) = argmax,, ZS,W p(s',r|s, a) [7“ - ’YV(S/)}

