
Course 1, Module 5 
Dynamic Programming

CMPUT 397

Fall 2019

Your feedback
(google survey results)

• Cover key terminology during review session

• Practice questions were a big positive

• Some people wanted more challenging in-class questions

• Some people wanted less discussion time

• Some people wanted more ways to ask questions

• We will do another survey in a couple weeks!

Reminders: Sept 18, 2019

• Dynamic Programming Course 1, Module 4 (Notebook) due this friday

• The private sessions for Course 2 (Sample based learning methods) is ready

• link to private session:  
https://coursera.org/groups/sample-based-learning-methods-ianmk/invitation  
(see eclass for more detailed instructions)

• We start Course 2 material next week!

https://coursera.org/groups/sample-based-learning-methods-ianmk/invitation

New format for Wednesday Lecture
• Based on your feedback

• You will still submit weekly discussion questions

• Wednesday lecture will begin with clarifying misconceptions

• The last 15-20 minutes of lecture we will break into three groups:

1. Q&A with the TAs: ask them anything about the course (goto them)

2. Challenge questions with Martha

3. Discussion time with Adam

Live question submission in class

• goto: https://www.tricider.com/brainstorming/3ZFvVmeuw4N

• Submit a question (anonymous if you like)

• We will cover them live in lecture today

• and if it works we will do this every Wednesday

https://www.tricider.com/brainstorming/3ZFvVmeuw4N

Clarifications
• How can we scale DP?

• When would DP not be effective?

• Why is the value of the terminal state always zero?

• Why would we initialise the policy/value function different from zero? (What are the
impacts on initialisation)?

• Why is there no epsilon-greedy (exploration) in Dynamic Programming

• Does DP only work with deterministic policies?

Clarifications
• Why is the stopping condition in policy evaluation max(delta ,|v - V (s)|),  

not min(delta ,|v - V (s)|)

• Statements about convergence can be different than statements about how the
algorithm works in practice (note we stop the algorithms before infinity)

• In Policy Iteration, the policy evaluation step stops based on theta, can we say
anything about convergence given different values of theta (Martha)

• The policy improvement theorem states we greedify the policy, how does this
not result in local minimum?

• If there are multiple optimal policies, policy iteration will always return the first one.
What do we do about this? (Challenge question)

Clarifications
• Why is bootstrapping required in DP? When would bootstrapping be a bad idea?

• Are there situations where we would use the Monte Carlo method instead of DP?

• How do we use Monte Carlo for policy evaluation?

• How does DP work in changing environments? Think of a maze where a path gets
blocked off.

• What is better Policy Iteration or Value Iteration? (Historical Remarks)

• Can we really apply DP? Warren Powell: Approximate Dynamic Programming for
Fleet Management

1. Why might policy iteration be better than value iteration? Or the other way
around?

2. How do we decide which states to update in asynchronous DP?

3. How could we apply DP methods in real-world problems with large (even infinite
state-spaces)

Discussion topics for today

Challenge Question 1Worksheet 5
CMPUT 397

October 2, 2019

4. (Challenge Question) A gambler has the opportunity to make bets on the outcomes
of a sequence of coin flips. If the coin comes up heads, she wins as many dollars as
she has staked on that flip; if it is tails, she loses her stake. The game ends when
the gambler wins by reaching her goal of $100, or loses by running out of money. On
each flip, the gambler must decide what portion of her capital to stake, in integer
numbers of dollars. This problem can be formulated as an undiscounted, episodic,
finite MDP. The state is the gambler’s capital, s 2 {1, 2, ..., 99} and the actions are
stakes, a 2 {0, 1, ...,min(s, 100� s)}. The reward is +1 when reaching the goal of $100
is zero on all other transitions.

(a) What is the interpretation for the value function in this problem?

(b) Write down pseudocode to solve this problem. Think about how you can modify
improve e�ciency of the Policy Iteration algorithm for this problem, by exploiting
your knowledge of the dynamics.

2

Challenge Question 2Worksheet 5
CMPUT 397

October 2, 2019

5. (Exercise 4.4 S&B) The policy iteration algorithm on page 80 has a subtle bug in that it
may never terminate if the policy continually switches between two or more policies that
are equally good. This is ok for pedagogy, but not for actual use. Modify the pseudocode
so that convergence is guaranteed. Note that there is more than one approach to solve this
problem.

80 Chapter 4: Dynamic Programming

s 2 S, illustrating policy improvement. Although in this case the new policy �� happens
to be optimal, in general only an improvement is guaranteed.

4.3 Policy Iteration

Once a policy, �, has been improved using v� to yield a better policy, ��, we can then
compute v�� and improve it again to yield an even better ���. We can thus obtain a
sequence of monotonically improving policies and value functions:

�0
E�� v�0

I�� �1
E�� v�1

I�� �2
E�� · · · I�� ��

E�� v�,

where
E�� denotes a policy evaluation and

I�� denotes a policy improvement . Each
policy is guaranteed to be a strict improvement over the previous one (unless it is already
optimal). Because a finite MDP has only a finite number of policies, this process must
converge to an optimal policy and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is
given in the box below. Note that each policy evaluation, itself an iterative computation,
is started with the value function for the previous policy. This typically results in a great
increase in the speed of convergence of policy evaluation (presumably because the value
function changes little from one policy to the next).

Policy Iteration (using iterative policy evaluation) for estimating � � ��

1. Initialization
V (s) 2 R and �(s) 2 A(s) arbitrarily for all s 2 S

2. Policy Evaluation
Loop:

� � 0
Loop for each s 2 S:

v � V (s)
V (s) �

�
s�,r p(s�, r |s, �(s))

�
r + �V (s�)

�

� � max(�, |v � V (s)|)
until � < � (a small positive number determining the accuracy of estimation)

3. Policy Improvement
policy-stable � true
For each s 2 S:

old-action � �(s)
�(s) � argmaxa

�
s�,r p(s�, r |s, a)

�
r + �V (s�)

�

If old-action �= �(s), then policy-stable � false
If policy-stable, then stop and return V � v� and � � ��; else go to 2

3

Discussion
(with Adam)

Challenge
Problems
(Martha)

