
Course 1, Module 5 
Dynamic Programming

CMPUT 397

Fall 2019

Weekly Schedule

• Sunday: Discussion question due, deadline for completing practice quiz

• Monday: Review of module, Q&A session about content. Finish with class exercise
question

• Wednesday: In-class Discussion based on your submitted discussion topics

• Friday: Graded Assessment (usually python notebook) due

• Friday: Finish discussion if needed. More in-class exercise questions from
worksheet

Are you in the private session?
• How to find out?

• check eclass!!!! Do you have marks for the notebooks you have done?

• check your email!!! The TAs have been personally emailing people to inform them

• The hour is late!!!

• if you are not in the private session, then do something about it today or risk
getting zero on everything to date

• Check Eclass announcements weekly!

Any questions about course admin?

Review of Course 1, Module 5
Dynamic Programming

Video 1: Policy Evaluation vs. Control

• Introduce the two classic problems of RL: prediction and control. Classic
assumptions of DP

• Goals:

• Understand the distinction between policy evaluation and control

• Explain the setting in which dynamic programming can be applied, as well as its
limitations

Video 2: Iterative Policy Evaluation

• How to turn Bellman equations into algorithms for computing value functions and
policies

• Goals:

• Outline the iterative policy evaluation algorithm for estimating state values for a
given policy

• Apply iterative policy evaluation to compute value functions. Example

Video 3: Policy Improvement

• Key theoretical result in RL and DP! How to make the policy better using the value
function

• Goals:

• Understand the policy improvement theorem; and how it can be used to
construct improved policies

• And use the value function for a policy to produce a better policy

Video 4: Policy Iteration

• Our first control algorithm. Why sequencing evaluation and improvement works!

• Goals:

• Outline the policy iteration algorithm for finding the optimal policy;

• Understand “the dance of policy and value”, how policy iteration reaches the
optimal policy by alternating between evaluating a policy and improving it

• Apply policy iteration to compute optimal policies and optimal value functions

Video 5: Flexibility of the Policy Iteration
Framework

• Generalized Policy Iteration: a general framework for control

• Goals:

• Understand the framework of generalized policy iteration

• Outline value iteration, an important special case of generalized policy iteration

• Differentiate synchronous and asynchronous dynamic programming methods

Video 6: Efficiency of Dynamic
Programming

• DP is actually pretty good, compared to other approaches! What's the deal with
Bootstrapping?

• Goals:

• Describe Monte-Carlo sampling as an alternative method for learning a value
function

• Describe brute force search as an alternative method for finding an optimal policy;
and

• Understand the advantages of Dynamic programming and “bootstrapping” over
these alternatives.

Practice Questions
76 Chapter 4: Dynamic Programming

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r = !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

Rt = �1

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions possible in each
state, A = {up, down, right, left}, which deterministically cause the corresponding
state transitions, except that actions that would take the agent o↵ the grid in fact leave
the state unchanged. Thus, for instance, p(6, �1 |5, right) = 1, p(7, �1 |7, right) = 1,
and p(10, r |5, right) = 0 for all r 2 R. This is an undiscounted, episodic task. The
reward is �1 on all transitions until the terminal state is reached. The terminal state is
shaded in the figure (although it is shown in two places, it is formally one state). The
expected reward function is thus r(s, a, s0) = �1 for all states s, s0 and actions a. Suppose
the agent follows the equiprobable random policy (all actions equally likely). The left side
of Figure 4.1 shows the sequence of value functions {vk} computed by iterative policy
evaluation. The final estimate is in fact v⇡, which in this case gives for each state the
negation of the expected number of steps from that state until termination.

Exercise 4.1 In Example 4.1, if ⇡ is the equiprobable random policy, what is q⇡(11, down)?
What is q⇡(7, down)? ⇤
Exercise 4.2 In Example 4.1, suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states 12, 13, 14,
and 15, respectively. Assume that the transitions from the original states are unchanged.
What, then, is v⇡(15) for the equiprobable random policy? Now suppose the dynamics of
state 13 are also changed, such that action down from state 13 takes the agent to the new
state 15. What is v⇡(15) for the equiprobable random policy in this case? ⇤
Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for the action-
value function q⇡ and its successive approximation by a sequence of functions q0, q1, q2, . . .?
⇤

4.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better policies.
Suppose we have determined the value function v⇡ for an arbitrary deterministic policy
⇡. For some state s we would like to know whether or not we should change the policy
to deterministically choose an action a 6= ⇡(s). We know how good it is to follow the
current policy from s—that is v⇡(s)—but would it be better or worse to change to the
new policy? One way to answer this question is to consider selecting a in s and thereafter

76 Chapter 4: Dynamic Programming

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r = !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

Rt = �1

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions possible in each
state, A = {up, down, right, left}, which deterministically cause the corresponding
state transitions, except that actions that would take the agent o↵ the grid in fact leave
the state unchanged. Thus, for instance, p(6, �1 |5, right) = 1, p(7, �1 |7, right) = 1,
and p(10, r |5, right) = 0 for all r 2 R. This is an undiscounted, episodic task. The
reward is �1 on all transitions until the terminal state is reached. The terminal state is
shaded in the figure (although it is shown in two places, it is formally one state). The
expected reward function is thus r(s, a, s0) = �1 for all states s, s0 and actions a. Suppose
the agent follows the equiprobable random policy (all actions equally likely). The left side
of Figure 4.1 shows the sequence of value functions {vk} computed by iterative policy
evaluation. The final estimate is in fact v⇡, which in this case gives for each state the
negation of the expected number of steps from that state until termination.

Exercise 4.1 In Example 4.1, if ⇡ is the equiprobable random policy, what is q⇡(11, down)?
What is q⇡(7, down)? ⇤
Exercise 4.2 In Example 4.1, suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states 12, 13, 14,
and 15, respectively. Assume that the transitions from the original states are unchanged.
What, then, is v⇡(15) for the equiprobable random policy? Now suppose the dynamics of
state 13 are also changed, such that action down from state 13 takes the agent to the new
state 15. What is v⇡(15) for the equiprobable random policy in this case? ⇤
Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for the action-
value function q⇡ and its successive approximation by a sequence of functions q0, q1, q2, . . .?
⇤

4.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better policies.
Suppose we have determined the value function v⇡ for an arbitrary deterministic policy
⇡. For some state s we would like to know whether or not we should change the policy
to deterministically choose an action a 6= ⇡(s). We know how good it is to follow the
current policy from s—that is v⇡(s)—but would it be better or worse to change to the
new policy? One way to answer this question is to consider selecting a in s and thereafter

76 Chapter 4: Dynamic Programming

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r = !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

Rt = �1

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions possible in each
state, A = {up, down, right, left}, which deterministically cause the corresponding
state transitions, except that actions that would take the agent o↵ the grid in fact leave
the state unchanged. Thus, for instance, p(6, �1 |5, right) = 1, p(7, �1 |7, right) = 1,
and p(10, r |5, right) = 0 for all r 2 R. This is an undiscounted, episodic task. The
reward is �1 on all transitions until the terminal state is reached. The terminal state is
shaded in the figure (although it is shown in two places, it is formally one state). The
expected reward function is thus r(s, a, s0) = �1 for all states s, s0 and actions a. Suppose
the agent follows the equiprobable random policy (all actions equally likely). The left side
of Figure 4.1 shows the sequence of value functions {vk} computed by iterative policy
evaluation. The final estimate is in fact v⇡, which in this case gives for each state the
negation of the expected number of steps from that state until termination.

Exercise 4.1 In Example 4.1, if ⇡ is the equiprobable random policy, what is q⇡(11, down)?
What is q⇡(7, down)? ⇤
Exercise 4.2 In Example 4.1, suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states 12, 13, 14,
and 15, respectively. Assume that the transitions from the original states are unchanged.
What, then, is v⇡(15) for the equiprobable random policy? Now suppose the dynamics of
state 13 are also changed, such that action down from state 13 takes the agent to the new
state 15. What is v⇡(15) for the equiprobable random policy in this case? ⇤
Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for the action-
value function q⇡ and its successive approximation by a sequence of functions q0, q1, q2, . . .?
⇤

4.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better policies.
Suppose we have determined the value function v⇡ for an arbitrary deterministic policy
⇡. For some state s we would like to know whether or not we should change the policy
to deterministically choose an action a 6= ⇡(s). We know how good it is to follow the
current policy from s—that is v⇡(s)—but would it be better or worse to change to the
new policy? One way to answer this question is to consider selecting a in s and thereafter

76 Chapter 4: Dynamic Programming

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r = !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

Rt = �1

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions possible in each
state, A = {up, down, right, left}, which deterministically cause the corresponding
state transitions, except that actions that would take the agent o↵ the grid in fact leave
the state unchanged. Thus, for instance, p(6, �1 |5, right) = 1, p(7, �1 |7, right) = 1,
and p(10, r |5, right) = 0 for all r 2 R. This is an undiscounted, episodic task. The
reward is �1 on all transitions until the terminal state is reached. The terminal state is
shaded in the figure (although it is shown in two places, it is formally one state). The
expected reward function is thus r(s, a, s0) = �1 for all states s, s0 and actions a. Suppose
the agent follows the equiprobable random policy (all actions equally likely). The left side
of Figure 4.1 shows the sequence of value functions {vk} computed by iterative policy
evaluation. The final estimate is in fact v⇡, which in this case gives for each state the
negation of the expected number of steps from that state until termination.

Exercise 4.1 In Example 4.1, if ⇡ is the equiprobable random policy, what is q⇡(11, down)?
What is q⇡(7, down)? ⇤
Exercise 4.2 In Example 4.1, suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states 12, 13, 14,
and 15, respectively. Assume that the transitions from the original states are unchanged.
What, then, is v⇡(15) for the equiprobable random policy? Now suppose the dynamics of
state 13 are also changed, such that action down from state 13 takes the agent to the new
state 15. What is v⇡(15) for the equiprobable random policy in this case? ⇤
Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for the action-
value function q⇡ and its successive approximation by a sequence of functions q0, q1, q2, . . .?
⇤

4.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better policies.
Suppose we have determined the value function v⇡ for an arbitrary deterministic policy
⇡. For some state s we would like to know whether or not we should change the policy
to deterministically choose an action a 6= ⇡(s). We know how good it is to follow the
current policy from s—that is v⇡(s)—but would it be better or worse to change to the
new policy? One way to answer this question is to consider selecting a in s and thereafter

Practice Questions

76 Chapter 4: Dynamic Programming

Example 4.1 Consider the 4⇥4 gridworld shown below.

actions

r = !1

on all transitions

1 2 3

4 5 6 7

8 9 10 11

12 13 14

Rt = �1

The nonterminal states are S = {1, 2, . . . , 14}. There are four actions possible in each
state, A = {up, down, right, left}, which deterministically cause the corresponding
state transitions, except that actions that would take the agent o↵ the grid in fact leave
the state unchanged. Thus, for instance, p(6, �1 |5, right) = 1, p(7, �1 |7, right) = 1,
and p(10, r |5, right) = 0 for all r 2 R. This is an undiscounted, episodic task. The
reward is �1 on all transitions until the terminal state is reached. The terminal state is
shaded in the figure (although it is shown in two places, it is formally one state). The
expected reward function is thus r(s, a, s0) = �1 for all states s, s0 and actions a. Suppose
the agent follows the equiprobable random policy (all actions equally likely). The left side
of Figure 4.1 shows the sequence of value functions {vk} computed by iterative policy
evaluation. The final estimate is in fact v⇡, which in this case gives for each state the
negation of the expected number of steps from that state until termination.

Exercise 4.1 In Example 4.1, if ⇡ is the equiprobable random policy, what is q⇡(11, down)?
What is q⇡(7, down)? ⇤
Exercise 4.2 In Example 4.1, suppose a new state 15 is added to the gridworld just below
state 13, and its actions, left, up, right, and down, take the agent to states 12, 13, 14,
and 15, respectively. Assume that the transitions from the original states are unchanged.
What, then, is v⇡(15) for the equiprobable random policy? Now suppose the dynamics of
state 13 are also changed, such that action down from state 13 takes the agent to the new
state 15. What is v⇡(15) for the equiprobable random policy in this case? ⇤
Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for the action-
value function q⇡ and its successive approximation by a sequence of functions q0, q1, q2, . . .?
⇤

4.2 Policy Improvement

Our reason for computing the value function for a policy is to help find better policies.
Suppose we have determined the value function v⇡ for an arbitrary deterministic policy
⇡. For some state s we would like to know whether or not we should change the policy
to deterministically choose an action a 6= ⇡(s). We know how good it is to follow the
current policy from s—that is v⇡(s)—but would it be better or worse to change to the
new policy? One way to answer this question is to consider selecting a in s and thereafter

16

Answers to Exercises
Reinforcement Learning: Chapter 4

Exercise 4.1 In Example 4.1, if ⇡ is the equiprobable random policy, what is
q⇡(11, down)? What is q⇡(7, down)?

Answer: q⇡(11, down) = �1. q⇡(7, down) = �15.

Exercise 4.2 In Example 4.1, suppose a new state 15 is added to the gridworld
just below state 13, and its actions, left, up, right, and down, take the agent to
states 12, 13, 14, and 15, respectively. Assume that the transitions from the original
states are unchanged. What, then, is v⇡(15) for the equiprobable random policy?
Now suppose the dynamics of state 13 are also changed, such that action down from
state 13 takes the agent to the new state 15. What is v⇡(15) for the equiprobable
random policy in this case?

12

Actions

r = -1

on all transitions

T 1 2 3

4 5 6 7

8 9 10 11

13 14 T T

 T -14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14.

15 -20.

R

Answer: In the case where none of the other states have their outgoing transitions
changed, then the new state’s value under the random policy is

v⇡(15) = E⇡[Rt+1 + v⇡(St+1) | St = s]

= �1 +
1

4
v⇡(12) +

1

4
v⇡(13) +

1

4
v⇡(14) +

1

4
v⇡(15)

Plugging in the asymptotic values for v1 = v⇡ for states 12, 13, and 14 from Fig-
ure 4.1 (and above, right) and solving for v⇡(15) yields

v⇡(15) = �1 � 1

4
22 � 1

4
20 � 1

4
14 � 1

4
v⇡(15)

v⇡(15)

✓
1 � 1

4

◆
= �15

v⇡(15) = �20

If the dynamics of state 13 also change, then it turns out that the answer is the
same! This can be most easily seen by hypothesizing that v⇡(15) = �20 and then
checking that all states still satisfy the Bellman equation for v⇡.

Exercise 4.3 What are the equations analogous to (4.3), (4.4), and (4.5) for the
action-value function q⇡ and its successive approximation by a sequence of functions
q0, q1, q2, . . . ?

Practice Questions
Worksheet 4

CMPUT 397

September 30, 2019

1. In iterative policy evaluation, we seek to find the value function for a policy ⇡ by

applying the Bellman equation many times to generate a sequence of value functions

vk that will eventually converge to the true value function v⇡. How can we modify the

update below to generate a sequence of action value functions qk?

vk+1(s) =
X

a

⇡(a|s)
X

s0,r

p(s0, r|s, a) [r + �vk(s
0
)]

2. Consider the 4x4 gridworld below, where actions that would take the agent o↵ the grid

leave the state unchanged. The task is episodic with � = 1 and the terminal states are

the shaded blocks. If ⇡ is the equiprobable random policy, what is q⇡(11, down)? What

is q⇡(7, down)?

1

