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Some background

• This course used to be taught as CMPUT 366


• It was time to make a Reinforcement Learning course


• The UofA is a world-leader in RL


• The approaches in RL will be useful in science & industry


• We made a MOOC, to make the topic more accessible to 
the world



This Course
• We will use the RL MOOC for this course (all lectures


• In-class time will be spent on


• Group discussions


• Worksheets and short answer questions


• Some free-form question and answer sessions


• Some lectures (and demos) on additional material



Instruction Team
• Profs: Adam White, Martha White


• TAs (grad students doing research in AI)


• Sungsu


• Ryan


• Alex


• Xutong



Contacting us

• Use the course discussion feature on eClass


• Start a discussion


• Read by prof and TAs


• Remember it is public!


• Meeting w/profs and TAs during office hours



Course Information
• Github pages with updated schedule


• Coursera RL Mooc


• Course eClass page


• some official information, and place to submit work


• Course Google Drive Folder (see eClass page for link)


• assignments, slides, readings, test prep



Prerequisites
• Some comfort or interest in thinking abstractly and with mathematics


• Elementary statistics, probability theory


• conditional expectations of random variables


• there will be a lab session devoted to a tutorial review of basic 
probability


• Basic linear algebra: vectors, vector equations, gradients


• Programming skills (Python)


• If Python is a problem, start working on it now



Textbook

• Readings will be from: Reinforcement Learning: An 
Introduction, by R Sutton and A Barto, MIT Press.


• available freely online


• printed copies available at the bookstore—I hope!



Registering for  
RL on Coursera

• We have our own private session, on Coursera


• We will register you today, and you should get an email



Evaluation

• Assignments/Quizzes (completed in Coursera) – 30%


• Project - 10%


• Midterm – 20%


• Final – 30%


• In-class Participation - 10%



Weekly Quizzes and 
Assignments

• Each week is a different module, with an associated quiz 
and/or notebook


• In preparation for class, on your own you need to:


• Watch the lectures online (at most 1 hour of time)


• Complete the quizzes/assignments (about 3-4 hours)


• You must complete the ungraded component by Sunday 
and the graded component by Thursday



Deadlines for  
Quizzes and Assignments

• We start Course 1 Module 2 (Sequential decision-making) 
Next week (Monday, September 9)


• This means by the end of the day, Sunday, September 8


• must complete Practice Quiz on Coursera


• must submit a Discussion Question on eClass


• Graded quiz or assignment is due on Thursday, Sept 12



Marking participation

• Submit Discussion Questions for class


• Volunteer to lead a Discussion Group



Project

• You can complete the capstone project (Course 4 of the 
RL Mooc)


• OR you can pick a project from a list of projects we 
provide 


• these will be less clear-cut (and more difficult), so you 
will have to talk to us at some point if you want to do 
this



No Lab

• There is No Lab 


• Beartracks is a bit confusing


• In-class time is already hands-on



Grades are  
not based on a curve

• We will provide cut-offs at the end of the course


• You can see your approximate ranking in eClass 
throughout the course


• Letter grades are provided by clustering of percentages


• This allows for adjusting due to yearly differences


• This is a third year course, so grades are typically skewed 
a bit higher



Collaboration

• Working together to solve the problems is encouraged


• But you must write-up your answers individually


• You must acknowledge all the people you talked with in 
solving the problems



What is Plagiarism

• Taking things from others and passing it off as your own 
work without credit



Test time: are these ok?
• Writing down answers to assignments in a group?


• Getting a tutor to help write your code?


• Letting your friend look at your code or assignment 
question?


• Searching for and using assignment solutions from the 
internet?


• Not indicating on your assignment who you talked with?


• Discussing ideas without writing anything down?
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Policies on Integrity
• Cheating is reported to university whereupon it is out of 

our hands


• Possible consequences:


• A mark of 0 for assignment


• A mark of 0 for the course


• A permanent note on student record


• Suspension / Expulsion from university
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Academic Integrity
• 	The University of Alberta is committed to the highest 

standards of academic integrity and honesty. Students are 
expected to be familiar with these standards regarding 
academic honesty and to uphold the policies of the 
University in this respect. Students are particularly urged to 
familiarize themselves with the provisions of the Code of 
Student Behavior (online at www.ualberta.ca/secretariat/
appeals.htm) and avoid any behavior which could 
potentially result in suspicions of cheating, plagiarism, 
misrepresentation of facts and/or participation in an 
offence. Academic dishonesty is a serious offence and can 
result in suspension or expulsion from the University.



Goals of Artificial Intelligence
•Scientific goal: 


•understand principles that make rational (intelligent) behavior 
possible, in natural or artificial systems. 


•Engineering goal: 


•specify methods for design of useful, intelligent artifacts. 


•Psychological goal: 


•understanding/modeling people 


•cognitive science


•Philosophical goal:


•Understand what it means to be a person


•Understand humanity’s role in the universe



Intelligence (mind)

• “Intelligence is the computational part of the ability to 
achieve goals in the world” 
                                                    —John McCarthy


• “the most powerful phenomena in the universe” 
                                                    —Ray Kurzweil



The coming of artificial 
intelligence

• When people finally come to understand the principles of 
intelligence—what it is and how it works—well enough to 
design and create beings as intelligent as ourselves


• A fundamental goal for science, engineering, the humanities, 
…for all mankind


• It will change the way we work and play, our sense of self, 
life, and death, the goals we set for ourselves and for our 
societies


• It will lead to new beings and new ways of being, things 
inevitably much more powerful than our current selves



Discuss with your classmates: 
Is human-level AI possible?  

• If people are biological machines, then eventually we will 
reverse engineer them, and understand their workings


• Then, surely we can make improvements


• with materials and technology not available to evolution


• how could there not be something we can improve?


• design can overcome local minima, make great strides, 
try things much faster than biology



Discuss with your classmates:  
When will we have AI

• When will we understand the principles of intelligence well 
enough to create, using technology, artificial minds that rival 
our own in skill and generality? 


• A. Never


• B. Not during your lifetime


• C. During your lifetime, but not before 2045


• D. Before 2045


• E. Before 2035



If AI is possible, then will it 
eventually, inevitably happen?
• No. Not if we destroy ourselves first


• If that doesn’t happen, then there will be strong, multi-
incremental economic incentives pushing inexorably 
towards human and super-human AI


• It seems unlikely that they could be resisted


• or successfully forbidden or controlled


• there is too much value, too many independent actors



Investment in AI is way up
• Google’s prescient AI buying spree: Boston Dynamics, Nest, Deepmind 

Technologies, …


• Newish AI research labs at Facebook, Baidu, Allen Institute, Vicarious, 
Maluuba, DeepMind Alberta…


• Also enlarged corporate AI labs: Microsoft, Amazon, Adobe… 


• Yahoo makes major investment in CMU machine learning department


• Many new AI startups getting venture capital


• New Canadian AI funding in Toronto, Montreal, and Edmonton 


• The Alberta Machine Intelligence Institute (AMII)



Advances in AI abilities are 
coming faster; in the last 6 years:
• IBM’s Watson beats the best human players of Jeopardy! (2011)


• Deep neural networks greatly improve the state of the art in speech recognition 
and computer vision (2012–)


• Google’s self-driving car becomes a plausible reality (≈2013)


• Deepmind’s DQN learns to play Atari games at the human level, from pixels, 
with no game-specific knowledge (≈2014, Nature)


• University of Alberta program solves Limit Poker (2015, Science),  
and then defeats professional players at No-limit Poker (2017, Science)


• Google Deepmind’s AlphaGo defeats legendary Go player Lee Sedol (2016, 
Nature),  
and world champion Ke Jie (2017), vastly improving over all previous programs



RL + Deep Learing Performance on Atari Games

Space Invaders Breakout Enduro



• Learned to play 49 games for the Atari 2600 game console, 
without labels or human input, from self-play and the score alone

• Learned to play better than all previous algorithms 
and at human level for more than half the games 

RL + Deep Learning, applied to Classic Atari Games 
Google Deepmind 2015, Bowling et al. 2012

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).
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Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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mapping raw
screen pixels

to predictions
of final score
for each of 18

joystick actions

Same learning 
algorithm applied 
to all 49 games! 

w/o human tuning



Cheap computation power 
drives progress in AI

• Deep learning algorithms are essentially the same as what 
was used in ‘80s


• only now with larger computers (GPUs) and larger data 
sets


• Similar impacts of computer power can be seen in recent 
years, and throughout AI’s history, in natural language 
processing, computer vision, and computer chess, Go, 
and other games



BUT, But! Many fundamental research  
questions remain unresolved 
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HalfCheetah-v1 (TRPO, Di↵erent Random Seeds)

Random Average (5 runs)

Random Average (5 runs)

Figure 5: TRPO on HalfCheetah-v1 using the same hyperpa-
rameter configurations averaged over two sets of 5 different
random seeds each. The average 2-sample t-test across entire
training distribution resulted in t = �9.0916, p = 0.0016.

Results We perform 10 experiment trials, for the same
hyperparameter configuration, only varying the random seed
across all 10 trials. We then split the trials into two sets of
5 and average these two groupings together. As shown in
Figure 5, we find that the performance of algorithms can
be drastically different. We demonstrate that the variance
between runs is enough to create statistically different dis-
tributions just from varying random seeds. Unfortunately, in
recent reported results, it is not uncommon for the top-N tri-
als to be selected from among several trials (Wu et al. 2017;
Mnih et al. 2016) or averaged over only small number of tri-
als (N < 5) (Gu et al. 2017; Wu et al. 2017). Our experiment
with random seeds shows that this can be potentially mislead-
ing. Particularly for HalfCheetah, it is possible to get learning
curves that do not fall within the same distribution at all, just
by averaging different runs with the same hyperparameters,
but different random seeds. While there can be no specific
number of trials specified as a recommendation, it is possible
that power analysis methods can be used to give a general
idea to this extent as we will discuss later. However, more
investigation is needed to answer this open problem.

Environments
How do the environment properties affect variability in re-
ported RL algorithm performance?

To assess how the choice of evaluation environment can af-
fect the presented results, we use our aforementioned default
set of hyperparameters across our chosen testbed of algo-
rithms and investigate how well each algorithm performs
across an extended suite of continuous control tasks. For
these experiments, we use the following environments from
OpenAI Gym: Hopper-v1, HalfCheetah-v1, Swimmer-v1 and
Walker2d-v1. The choice of environment often plays an im-
portant role in demonstrating how well a new proposed algo-
rithm performs against baselines. In continuous control tasks,
often the environments have random stochasticity, shortened
trajectories, or different dynamic properties. We demonstrate
that, as a result of these differences, algorithm performance
can vary across environments and the best performing algo-
rithm across all environments is not always clear. Thus it is

increasingly important to present results for a wide range of
environments and not only pick those which show a novel
work outperforming other methods.

Results As shown in Figure 4, in environments with sta-
ble dynamics (e.g. HalfCheetah-v1), DDPG outperforms all
other algorithsm. However, as dynamics become more unsta-
ble (e.g. in Hopper-v1) performance gains rapidly diminish.
As DDPG is an off-policy method, exploration noise can
cause sudden failures in unstable environments. Therefore,
learning a proper Q-value estimation of expected returns is
difficult, particularly since many exploratory paths will result
in failure. Since failures in such tasks are characterized by
shortened trajectories, a local optimum in this case would be
simply to survive until the maximum length of the trajectory
(corresponding to one thousand timesteps and similar reward
due to a survival bonus in the case of Hopper-v1). As can be
seen in Figure 4, DDPG with Hopper does exactly this. This
is a clear example where showing only the favourable and sta-
ble HalfCheetah when reporting DDPG-based experiments
would be unfair.

Furthermore, let us consider the Swimmer-v1 environment
shown in Figure 4. Here, TRPO significantly outperforms
all other algorithms. Due to the dynamics of the water-like
environment, a local optimum for the system is to curl up and
flail without proper swimming. However, this corresponds
to a return of ⇠130. By reaching a local optimum, learning
curves can indicate successful optimization of the policy over
time, when in reality the returns achieved are not qualitatively
representative of learning the desired behaviour, as demon-
strated in video replays of the learned policy5. Therefore,
it is important to show not only returns but demonstrations
of the learned policy in action. Without understanding what
the evaluation returns indicate, it is possible that misleading
results can be reported which in reality only optimize local
optima rather than reaching the desired behaviour.

Codebases
Are commonly used baseline implementations comparable?

In many cases, authors implement their own versions of base-
line algorithms to compare against. We investigate the Ope-
nAI baselines implementation of TRPO as used in (Schulman
et al. 2017), the original TRPO code (Schulman et al. 2015a),
and the rllab (Duan et al. 2016) Tensorflow implementation of
TRPO. We also compare the rllab Theano (Duan et al. 2016),
rllabplusplus (Gu et al. 2016), and OpenAI baselines (Plap-
pert et al. 2017) implementations of DDPG. Our goal is to
draw attention to the variance due to implementation details
across algorithms. We run a subset of our architecture experi-
ments as with the OpenAI baselines implementations using
the same hyperparameters as in those experiments6.

Results We find that implementation differences which
are often not reflected in publications can have dramatic
impacts on performance. This can be seen for our final evalu-
ation performance after training on 2M samples in Tables 1

5
https://youtu.be/lKpUQYjgm80

6Differences are discussed in the supplemental (e.g. use of dif-
ferent optimizers for the value function baseline). Leaky ReLU
activations are left out to narrow the experiment scope.

(Henderson et al, 2018) 

(Plappert et al, 2017)



Algorithmic advances in 
Alberta

• World’s best computer games group for decades (see 
Bowling’s talk) including solving Poker


• Created the Atari games environment that our alumni, at 
Deepmind, used to show learning of human-level play


• Trained the AlphaGo & AlphaStar team that beat the world 
Go champion


• World’s leading university in reinforcement learning 
algorithms, theory, and applications, including TD, MCTS


• ≈20 faculty members in AI



Job opportunities in Alberta

• Huawei Edmonton Research lab


• Borealis AI


• Deepmind Alberta


• Several new labs and startups on the horizon



Discuss with your classmates: 
Why are you here?

• What do you expect to learn?



Good Old-fashioned AI (GOFAI) 
and Modern Probabilistic AI

• AI was originally based more on deterministic symbolic logic, human 
intuition about thinking, and hand-crafted knowledge


• Over decades AI became  
more numeric, statistical,  
and based on data (learning)


• And also much more  
integrated with engineering  
fields: statistics, decision  
theory, control theory,  
operations research, robotics 
computer science


• Substantial convergence and divergence, with tensions and turf issues in 
both cases

100
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100000

1983 1988 1993 1998 2003 2008

Google 
scholar 

hits

Year

“artificial intelligence”

“machine learning”



For you, which of the following are essential abilities of an intelligent 
system that you would like to learn about (say in this course)?

The ability to:

A.sense and perceive the external world
B. choose actions that affect the world
C.use language and interact with other agents
D.predict the future
E. fool people into thinking that you are a person 
F. have and achieve goals
G.reason symbolically, as in logic and mathematics
H.reason in advance about courses of action before picking the best
I. learn by trying things out and subsequently picking the best
J. have emotions, pleasure and pain
K.other?

Discuss with your classmates



For you, which of the following are essential abilities of an intelligent system 
that you would like to learn about (say in this course)?

The ability to:

A.sense and perceive the external world
B. choose actions that affect the world
C.use language and interact with other agents
D.predict the future
E. fool people into thinking that you are a person 
F. have and achieve goals
G.reason symbolically, as in logic and mathematics
H.reason in advance about courses of action before picking the best
I. learn by trying things out and subsequently picking the best
J. have emotions, pleasure and pain
K.other?



• Perception, action, & anticipation
• as fast and reactive as possiblethe mind’s first responsibility is 

real-time sensorimotor information processing



Reinforcement learning 
is more autonomous learning

Agent

Action
Sensation/

state Reward

World

• Learning that requires less input from people

• AI that can learn for itself, during its normal 

operation



Kinds of Reinforcement Learning

• Model-free RL — learning what to do by trying different 
things, remembering the best


• Model-based RL — learning how the world works, then 
computing what to do


• Prediction learning — learning what will happen next


• Representation learning — learning the features of 
state that generalize well


• RL architectures — putting it all together with massive 
computation



GridWorld Example



Course Overview
• Main Topics:


• Learning   (by trial and error)


• Planning   (search, reason, thought, cognition)


• Prediction (evaluation functions, knowledge)


• Control      (action selection, decision making)


• Recurring issues:


• Demystifying the illusion of intelligence



Order of Presentation

• Control: Bandits and Markov decision processes


• Stochastic planning (dynamic programming)


• Model-free reinforcement learning


• Planning with a learned model


• Learning with approximations



Schedule

• Week-by-week schedule on github


• Includes topics


• Includes assignments and deliverables



High-level view
• Bandits and online learning (ch2): 


• formalizing a problem and discussing solution methods


• A miniature version of the entire course


• Markov Decision Processes (ch3):


• Our formalization of reinforcement learning and AI…no 
solution methods here


• Students usually get impatient here



High-level view (2)
• Classic MDP solution methods (ch’s 4,5,6): 


• Dynamic programming (what if you knew how the world 
worked?)


• Monte Carlo (what if you only learned from interaction)


• Temporal difference learning (strengths of both)


• More advanced stuff:


• planning with learned models



High-level view (3)
• Everything up to and including chapter 8 is tabular 

solution methods:


• The foundation of modern RL


• In chapters 9, 10, 13 cover approximate solution 
methods:


• Function approximation (including Neural Nets)


• The foundations established in chapter 3-8 will largely 
transfer to the function approximation case



AI Seminar !!!

• http://www.cs.ualberta.ca/~ai/cal/


• Friday noons, CSC 3-33


• Neat topics, great speakers


• For mailing list of announcements,  
google “mailman ualberta”, then 
sign up for ai-seminar

, FREE PIZZA!


