
Worksheet C3M3
CMPUT 397

December 2, 2020

1. (Exercise 10.2 S&B) Give pseudocode for semi-gradient one-step Expected Sarsa for control.
You can build on the semi-gradient Sarsa code for this question.

244 Chapter 10: On-policy Control with Approximation

prediction is

wt+1
.
= wt + ↵

h
Ut � q̂(St, At,wt)

i
rq̂(St, At,wt). (10.1)

For example, the update for the one-step Sarsa method is

wt+1
.
= wt + ↵

h
Rt+1 + �q̂(St+1, At+1,wt)� q̂(St, At,wt)

i
rq̂(St, At,wt). (10.2)

We call this method episodic semi-gradient one-step Sarsa. For a constant policy, this
method converges in the same way that TD(0) does, with the same kind of error bound
(9.14).

To form control methods, we need to couple such action-value prediction methods with
techniques for policy improvement and action selection. Suitable techniques applicable to
continuous actions, or to actions from large discrete sets, are a topic of ongoing research
with as yet no clear resolution. On the other hand, if the action set is discrete and not too
large, then we can use the techniques already developed in previous chapters. That is, for
each possible action a available in the current state St, we can compute q̂(St, a,wt) and
then find the greedy action A⇤

t = argmaxa q̂(St, a,wt�1). Policy improvement is then
done (in the on-policy case treated in this chapter) by changing the estimation policy to a
soft approximation of the greedy policy such as the "-greedy policy. Actions are selected
according to this same policy. Pseudocode for the complete algorithm is given in the box.

Episodic Semi-gradient Sarsa for Estimating q̂ ⇡ q⇤

Input: a di↵erentiable action-value function parameterization q̂ : S⇥A⇥ Rd ! R
Algorithm parameters: step size ↵ > 0, small " > 0
Initialize value-function weights w 2 Rd arbitrarily (e.g., w = 0)

Loop for each episode:
S, A initial state and action of episode (e.g., "-greedy)
Loop for each step of episode:

Take action A, observe R, S0

If S0 is terminal:
w w + ↵

⇥
R� q̂(S, A,w)

⇤
rq̂(S, A,w)

Go to next episode
Choose A0 as a function of q̂(S0, ·,w) (e.g., "-greedy)
w w + ↵

⇥
R + �q̂(S0, A0,w)� q̂(S, A,w)

⇤
rq̂(S, A,w)

S S0

A A0

Example 10.1: Mountain Car Task Consider the task of driving an underpowered
car up a steep mountain road, as suggested by the diagram in the upper left of Figure 10.1.
The di�culty is that gravity is stronger than the car’s engine, and even at full throttle
the car cannot accelerate up the steep slope. The only solution is to first move away from
the goal and up the opposite slope on the left. Then, by applying full throttle the car

2. (Exercise 10.1 S&B) We have not explicitly considered or given pseudocode for any Monte
Carlo methods in this chapter. What would they be like? Why is it reasonable not to give
pseudocode for them?

3. How would you use optimistic initial values, for Sarsa with a tile coding function approxi-
mator? Assume you have a two dimensional input, and you use m tilings, and n tiles, to
give m grids of size n× n resulting in m× n× n features. What size is your weight vector?
And how do you initialize your weights to ensure you have optimistic initial values? Assume
the maximum reward is Rmax and we use a γ < 1.

4. (Exercise 10.8 S&B) The pseudocode in the box on page 251 updates R̄t using δt as an error
rather than simply Rt+1− R̄t. Both errors work, but using δt is better. To see why, consider
the ring MRP of three states from Exercise 10.7. The estimate of the average reward should
tend towards its true value of 1

3
. Suppose you fix R̄t = 1

3
and fix vπ(A) = −1

3
, vπ(B) =

0, vπ(C) = 1
3
, which are the true values. What is the sequence of Rt+1 − R̄t errors, when

going from A to B, B to C and then C to A? Correspondingly, what is the sequence of TD
errors? Here, since we use the true values, we have δt = Rt+1 − R̄t + vπ(St+1) − vπ(St).
What does this tell us about which error sequence would produce a more stable estimate of
the average reward if the estimates were allowed to change in response to the errors? Why?

A

BC

R = 1 R = 0

R = 0

1

