1. (*Exercise 10.2 S&B*) Give pseudocode for semi-gradient one-step Expected Sarsa for control. You can build on the semi-gradient Sarsa code for this question.

| Episodic Semi-gradient Sarsa for Estimating $\hat{q} \approx q_*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input: a differentiable action-value function parameterization $\hat{q} : \mathbb{S} \times \mathcal{A} \times \mathbb{R}^d \to \mathbb{R}$<br>Algorithm parameters: step size $\alpha > 0$ , small $\varepsilon > 0$<br>Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = 0$ )                                                                                                                                                                                                                                                                                                    |
| Loop for each episode:<br>$S, A \leftarrow \text{initial state and action of episode (e.g., $\varepsilon$-greedy)}$<br>Loop for each step of episode:<br>Take action $A$ , observe $R, S'$<br>If $S'$ is terminal:<br>$\mathbf{w} \leftarrow \mathbf{w} + \alpha [R - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})$<br>Go to next episode<br>Choose $A'$ as a function of $\hat{q}(S', \cdot, \mathbf{w})$ (e.g., $\varepsilon$ -greedy)<br>$\mathbf{w} \leftarrow \mathbf{w} + \alpha [R + \gamma \hat{q}(S', A', \mathbf{w}) - \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w})$<br>$S \leftarrow S'$ |

- 2. (*Exercise 10.1 S&B*) We have not explicitly considered or given pseudocode for any Monte Carlo methods in this chapter. What would they be like? Why is it reasonable not to give pseudocode for them?
- 3. How would you use optimistic initial values, for Sarsa with a tile coding function approximator? Assume you have a two dimensional input, and you use m tilings, and n tiles, to give m grids of size  $n \times n$  resulting in  $m \times n \times n$  features. What size is your weight vector? And how do you initialize your weights to ensure you have optimistic initial values? Assume the maximum reward is  $R_{\text{max}}$  and we use a  $\gamma < 1$ .
- 4. (Exercise 10.8 S&B) The pseudocode in the box on page 251 updates  $\bar{R}_t$  using  $\delta_t$  as an error rather than simply  $R_{t+1} - \bar{R}_t$ . Both errors work, but using  $\delta_t$  is better. To see why, consider the ring MRP of three states from Exercise 10.7. The estimate of the average reward should tend towards its true value of  $\frac{1}{3}$ . Suppose you fix  $\bar{R}_t = \frac{1}{3}$  and fix  $v_{\pi}(A) = \frac{-1}{3}, v_{\pi}(B) =$  $0, v_{\pi}(C) = \frac{1}{3}$ , which are the true values. What is the sequence of  $R_{t+1} - \bar{R}_t$  errors, when going from A to B, B to C and then C to A? Correspondingly, what is the sequence of TD errors? Here, since we use the true values, we have  $\delta_t = R_{t+1} - \bar{R}_t + v_{\pi}(S_{t+1}) - v_{\pi}(S_t)$ . What does this tell us about which error sequence would produce a more stable estimate of the average reward if the estimates were allowed to change in response to the errors? Why?

