
Worksheet C2M3
CMPUT 397

October 23, 2020

1. Consider the following MDP, with three states B,C and D (S = {B,C,D}), and 2 actions
(A = {1, 2}), with γ = 1.0. Assume the action values are initialized Q(s, a) = 0 ∀ s ∈ S
and a ∈ A. The agent takes actions according to an ε-greedy policy with ε = 0.1.

(a) What is the optimal policy for this MDP? What are the action-values corresponding to
the optimal policy: q∗(s, a)?

(b) Imagine the agent experienced a single episode, and the following experience: S0 = B,A0 =
2, R1 = 0, S1 = D,A1 = 2, R2 = 4. What are the Sarsa updates during this episode,
assuming α = 0.1? Start with state B, and compute and apply the Sarsa update. Then
compute and apply the Sarsa update for the value of state D.

(c) Using the sample episode above, compute the updates Q-learning would make, with α =
0.1. Again start with state B, and then state D.

(d) Let’s consider one more episode: S0 = B,A0 = 2, R1 = 0, S1 = D,A1 = 1, R2 = −100.
What would the Sarsa updates be? And what would the Q-learning updates be?

(e) Assume you see one more episode, and it’s the same one as in 1d. Once more update the
action values, for Sarsa and Q-learning. What do you notice?

(f) What policy does Q-learning converge to? What policy does Sarsa converge to?

B

Ca = 1, r = +1

Deterministic transitions

Da = 2, r = 0

a = 1, r = +1

a = 2, r = +2

a = 2, r = +4

a = 1, r = -100

1

Worksheet C2M3
CMPUT 397

October 23, 2020

2. In Monte Carlo control, we required that every state-action pair be visited infinitely often.
One way this can be guaranteed is by using exploring starts. Can we use exploring starts
for Sarsa? Further, we have talked about using Sarsa with an ε-greedy policy. Can we use
Monte Carlo with an ε-greedy policy? Does this ensure sufficient exploration?

3. (Exercise 6.11 S&B) Why is Q-learning considered an off-policy control method? Why is
Sarsa considered on-policy, but Expected Sarsa can be used off-policy?

4. (Exercise 6.12 S&B) Suppose action selection is greedy. Is Q-learning then exactly the
same algorithm as Sarsa? Will they make exactly the same action selections and weight
updates? (Additional Challenge: What about Expected Sarsa? Does it have the same
or different updates as Q-learning or Sarsa?)

130 Chapter 6: Temporal-Di↵erence Learning

Sarsa (on-policy TD control) for estimating Q ⇡ q⇤

Algorithm parameters: step size ↵ 2 (0, 1], small " > 0
Initialize Q(s, a), for all s 2 S+, a 2 A(s), arbitrarily except that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Choose A from S using policy derived from Q (e.g., "-greedy)
Loop for each step of episode:

Take action A, observe R, S0

Choose A0 from S0 using policy derived from Q (e.g., "-greedy)
Q(S, A) Q(S, A) + ↵

⇥
R + �Q(S0, A0)�Q(S, A)

⇤

S S0; A A0;
until S is terminal

Example 6.5: Windy Gridworld Shown inset below is a standard gridworld, with
start and goal states, but with one di↵erence: there is a crosswind running upward
through the middle of the grid. The actions are the standard four—up, down, right,
and left—but in the middle region the resultant next states are shifted upward by a
“wind,” the strength of which varies from column to column. The strength of the wind

0 1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150
170

Time steps

S G

0 0 0 01 1 1 12 2

Actions

Ep
is
od

es

is given below each column, in num-
ber of cells shifted upward. For ex-
ample, if you are one cell to the
right of the goal, then the action
left takes you to the cell just above
the goal. This is an undiscounted
episodic task, with constant rewards
of �1 until the goal state is reached.

The graph to the right shows the
results of applying "-greedy Sarsa to
this task, with " = 0.1, ↵ = 0.5,
and the initial values Q(s, a) = 0
for all s, a. The increasing slope of
the graph shows that the goal was
reached more quickly over time. By
8000 time steps, the greedy policy was long since optimal (a trajectory from it is shown
inset); continued "-greedy exploration kept the average episode length at about 17 steps,
two more than the minimum of 15. Note that Monte Carlo methods cannot easily be used
here because termination is not guaranteed for all policies. If a policy was ever found
that caused the agent to stay in the same state, then the next episode would never end.
Online learning methods such as Sarsa do not have this problem because they quickly
learn during the episode that such policies are poor, and switch to something else.

Exercise 6.9: Windy Gridworld with King’s Moves (programming) Re-solve the windy
gridworld assuming eight possible actions, including the diagonal moves, rather than the

6.5. Q-learning: O↵-policy TD Control 131

usual four. How much better can you do with the extra actions? Can you do even better
by including a ninth action that causes no movement at all other than that caused by
the wind? ⇤
Exercise 6.10: Stochastic Wind (programming) Re-solve the windy gridworld task with
King’s moves, assuming that the e↵ect of the wind, if there is any, is stochastic, sometimes
varying by 1 from the mean values given for each column. That is, a third of the time
you move exactly according to these values, as in the previous exercise, but also a third
of the time you move one cell above that, and another third of the time you move one
cell below that. For example, if you are one cell to the right of the goal and you move
left, then one-third of the time you move one cell above the goal, one-third of the time
you move two cells above the goal, and one-third of the time you move to the goal. ⇤

6.5 Q-learning: O↵-policy TD Control

One of the early breakthroughs in reinforcement learning was the development of an
o↵-policy TD control algorithm known as Q-learning (Watkins, 1989), defined by

Q(St, At) Q(St, At) + ↵
h
Rt+1 + � max

a
Q(St+1, a)�Q(St, At)

i
. (6.8)

In this case, the learned action-value function, Q, directly approximates q⇤, the optimal
action-value function, independent of the policy being followed. This dramatically
simplifies the analysis of the algorithm and enabled early convergence proofs. The policy
still has an e↵ect in that it determines which state–action pairs are visited and updated.
However, all that is required for correct convergence is that all pairs continue to be
updated. As we observed in Chapter 5, this is a minimal requirement in the sense that
any method guaranteed to find optimal behavior in the general case must require it.
Under this assumption and a variant of the usual stochastic approximation conditions on
the sequence of step-size parameters, Q has been shown to converge with probability 1 to
q⇤. The Q-learning algorithm is shown below in procedural form.

Q-learning (o↵-policy TD control) for estimating ⇡ ⇡ ⇡⇤

Algorithm parameters: step size ↵ 2 (0, 1], small " > 0
Initialize Q(s, a), for all s 2 S+, a 2 A(s), arbitrarily except that Q(terminal , ·) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., "-greedy)
Take action A, observe R, S0

Q(S, A) Q(S, A) + ↵
⇥
R + � maxa Q(S0, a)�Q(S, A)

⇤

S S0

until S is terminal

2

Worksheet C2M3
CMPUT 397

October 23, 2020

5. In this question we compare the variance of the target for Sarsa and Expected Sarsa. Recall
the update for Sarsa is

Q(St, At)← Q(St, At) + α [Rt+1 + γQ(St+1, At+1)−Q(St, At)]

and for Expected Sarsa is

Q(St, At)← Q(St, At) + α

[
Rt+1 + γ

∑

a′∈A

π(a′|St+1)Q(St+1, a
′)−Q(St, At)

]
.

(a) Start by comparing the part of the update that is different: Q(St+1, At+1) compared to∑
a′∈A π(a′|St+1)Q(St+1, a

′). Write down the variance for these two terms, given St+1 = s′.

Var(Q(s′, At+1)) and Var

(∑

a′∈A

π(a′|s′)Q(s′, a′)

)

Conclude that the variance is zero for Expected Sarsa, but likely non-zero for Sarsa. Notice
that the only random variable is At+1, which is the action selected according to the target
policy π with distribution π(·|St+1).

(b) Challenge Question: Show that the variance of the Sarsa target is always greater than
or equal to the variance of the Expected Sarsa target, given St = s and At = a. Hint:
use the Law of Total Variance, which states that for any two random variables X and Y ,
Var(Y) = E[Var(Y |X)] + Var(E[Y |X]). This law also applies to conditional distributions:
for any random variables X, Y and Z, Var(Y |Z) = E[Var(Y |X,Z)|Z]+Var(E[Y |X,Z]|Z).

3

