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Millions of frames

https://www.alexirpan.com/2018/02/14/rl-hard.html
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Millions of frames

‘Rainbow’ takes around 20
million frames of experience
to achieve the performance

of an average human

Corresponds to about 83 hours
of gameplay

https://www.alexirpan.com/2018/02/14/rl-hard.html
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Millions of frames

‘Rainbow’ takes around 20
million frames of experience
to achieve the performance

of an average human

Corresponds to about 83 hours
of gameplay

DQN couldn’t reach it even after
200 million frames of experience

https://www.alexirpan.com/2018/02/14/rl-hard.html
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GAME 1: (A)
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https://rach0012.github.io/humanRL_website
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GAME 2: ()

What did we learn?

We rely on prior knowledge that:
» left arrow key leads lefft,
» right arrow key leads right,

» €lC.




GAME 3: (B)
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GAME 3: (B)

What did we learn?

We rely on prior knowledge that:
» Ladders can be climbed

» Spikes are bad

» Monsters are bad

» Keys can open doors

|
\L.
|

| IL .

|
N

.

I



GAME 4: (E)
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GAME &: (E)
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We rely on prior knowledge that:

» Black spaceis empty —
has no objects




GAME 5: (F)

m "f'i':\ ¥,

| m?w?wiygy?

o R

E
»

R R

>
»

e

i.ﬁ | Eéﬁéﬁﬁ&*

L 161"

o"t-"

PO 127 e Fr R N e e G w4
b bia e iia b

g

https://rach0012.github.io/humanRL_website



GAME 3: (F)

What did we learn?

We rely on prior knowledge that:

» Things that look similar,
behave similarly
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GAME 6: HARD MODE
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GAME 6: HARD MODE

What did we learn?

We rely on prior knowledge that:
» Left arrow key leads left, etc.

» Ladders can be climbed

» Spikes are bad
» Monsters are bad

» Keys can open doors

» Black space is empty —
has no objects

» Things that look similar,
behave similarly
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Time Death State Time Death State ‘ Time Death State Time Death State
(a) Original (b) Masked (e) Masked () Masked
Game Semantics Affordances Similarity

Figure 3. Quantifying the influence of various object priors. The blue bar shows average time taken by humans (in minutes), orange
bar shows the average number of deaths, and yellow bar shows the number of unique states visited by players to solve the various games.
For visualization purposes, the number of deaths is divided by 2, and the number of states 1s divided by 1000 respectively.




SOME STATISTICS




PRIOR KNOWLEDGE — AMAZING?

e In all the previous cases, prior
information was useful in
solving the game/task.

* Does that mean we just try
and build in as much prior
knowledge as possible into
our agents?
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e |n all the previous cases, prior e (c) -
information was useful in ji===
solving the game/task. E
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QUESTIONS?

Paper: https://arxiv.org/abs/1802.1021/
Website: https://rach00712.github.io/humanRL_website
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