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1. (Exercise 6.3 S&B) From the results shown in the left graph of the random walk example
it appears that the first episode results in a change in only V (A). What does this tell you
about what happened on the first episode? Why was only the estimate for this one state
changed? By exactly how much was it changed?
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Example 6.2 Random Walk

In this example we empirically compare the prediction abilities of TD(0) and
constant-↵ MC when applied to the following Markov reward process:
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A Markov reward process, or MRP, is a Markov decision process without actions.
We will often use MRPs when focusing on the prediction problem, in which there is
no need to distinguish the dynamics due to the environment from those due to the
agent. In this MRP, all episodes start in the center state, C, then proceed either left
or right by one state on each step, with equal probability. Episodes terminate either
on the extreme left or the extreme right. When an episode terminates on the right,
a reward of +1 occurs; all other rewards are zero. For example, a typical episode
might consist of the following state-and-reward sequence: C, 0,B, 0,C, 0,D, 0,E, 1.
Because this task is undiscounted, the true value of each state is the probability of
terminating on the right if starting from that state. Thus, the true value of the
center state is v⇡(C) = 0.5. The true values of all the states, A through E, are
1
6 , 2

6 , 3
6 , 4

6 , and 5
6 .

0.8

0

0.2

0.4

0.6

A B C D E

0

10

1

100

State

Estimated
value

True 
values

Estimated
value

0

0.05

0.1

0.15

0.2

0.25

0 25 50 75 100
Walks / Episodes

TD

MC
RMS error,
averaged
over states

α=.01

α=.1

α=.02

α=.03

α=.04

α=.15

α=.05

Empirical RMS error, 
averaged over states

The left graph above shows the values learned after various numbers of episodes
on a single run of TD(0). The estimates after 100 episodes are about as close as
they ever come to the true values—with a constant step-size parameter (↵ = 0.1
in this example), the values fluctuate indefinitely in response to the outcomes
of the most recent episodes. The right graph shows learning curves for the two
methods for various values of ↵. The performance measure shown is the root
mean-squared (RMS) error between the value function learned and the true value
function, averaged over the five states, then averaged over 100 runs. In all cases the
approximate value function was initialized to the intermediate value V (s) = 0.5, for
all s. The TD method was consistently better than the MC method on this task.
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2. Assume the agent interacts with a simple two-state MDP shown below. Every episode
begins in state X, and ends when the agent transitions from state Y to the terminal state
(denoted by gray box). Let’s denote the set of states as S = {X, Y, T}. There is only one
possible action in each state, so there is only one possible policy in this MDP. Let’s denote
the set of actions A = {A}. In state Y the agent terminates when it takes action A and
sometimes gets a reward of +1000, and sometimes gets a reward of -1000: the reward on
this last transition is stochastic. Let γ = 1.0.

X Y
R = 0

P (R = r|Y ) =

⇢
0.5 if r = �1000
0.5 if r = +1000
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Deterministic transitions (X to Y to terminal)

1 action

Stochastic reward from Y

(a) Write down π(a|s) ∀ s ∈ S, a ∈ A
(b) Write down all the possible trajectories (sequence of states, actions, and rewards) in this

MDP that start from state X?

(c) What the value of policy π (i.e. what is vπ(X), vπ(Y ))?
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(d) Assume our estimate is equal to the value of π. That is V (s) = vπ(s) ∀ s ∈ S. Now
compute the TD-error δt = Rt+1 +γV (St+1)−V (St) for the transition from state Y to the
terminal state, assuming Rt+1 = +1000. Why is the TD-error not zero if we start with
V (Y ) = vπ(Y )?

(e) Based on your answer to (e), what does this mean for the TD-update, for constant α = 0.1?
Will V (Y ) = vπ(Y ) = 0 after we update the value? Recall the TD-update is V (St) ←
V (St) + αδt. What does this tell us about the updates TD(0) would make on this MDP?

(f) What is the expected TD-update, from state Y for the given V ?

(g) Assume still that V = Vπ = 0. What is the expectation and the variance of the TD update
from state X? What is the expectation and the variance of the Monte-carlo update from
state X?

3. (Exercise 6.4 S&B) The specific results shown in the right graph of the random walk
example are dependent on the value of the step-size parameter, α. Do you think the
conclusions about which algorithm is better would be affected if a wider range of α values
were used? Is there a different, fixed value of α at which either algorithm would have
performed significantly better than shown? Why or why not?

4. (Challenge Question) (Exercise 6.5 S&B) In the right graph of the random walk example,
the RMS error of the TD method seems to go down and then up again, particularly at high
α’s. What could have caused this? Do you think this always occurs, or might it be a
function of how the approximate value function was initialized?

5. (Exercise 6.7 S&B) Design an off-policy version of the TD(0) update that can be used with
arbitrary target policy π and covering behavior policy b, using at each step t the importance
sampling ratio ρt:t (5.3).

6. Modify the Tabular TD(0) algorithm for estimating vπ, to estimate qπ.

120 Chapter 6: Temporal-Di↵erence Learning

where Gt is the actual return following time t, and ↵ is a constant step-size parameter (c.f.,
Equation 2.4). Let us call this method constant-↵ MC. Whereas Monte Carlo methods
must wait until the end of the episode to determine the increment to V (St) (only then is
Gt known), TD methods need to wait only until the next time step. At time t + 1 they
immediately form a target and make a useful update using the observed reward Rt+1 and
the estimate V (St+1). The simplest TD method makes the update

V (St) V (St) + ↵
h
Rt+1 + �V (St+1)� V (St)

i
(6.2)

immediately on transition to St+1 and receiving Rt+1. In e↵ect, the target for the Monte
Carlo update is Gt, whereas the target for the TD update is Rt+1 + �V (St+1). This TD
method is called TD(0), or one-step TD, because it is a special case of the TD(�) and
n-step TD methods developed in Chapter 12 and Chapter 7. The box below specifies
TD(0) completely in procedural form.

Tabular TD(0) for estimating v⇡

Input: the policy ⇡ to be evaluated
Algorithm parameter: step size ↵ 2 (0, 1]
Initialize V (s), for all s 2 S+, arbitrarily except that V (terminal) = 0

Loop for each episode:
Initialize S
Loop for each step of episode:

A action given by ⇡ for S
Take action A, observe R, S0

V (S) V (S) + ↵
⇥
R + �V (S0)� V (S)

⇤

S  S0

until S is terminal

Because TD(0) bases its update in part on an existing estimate, we say that it is a
bootstrapping method, like DP. We know from Chapter 3 that

v⇡(s)
.
= E⇡[Gt | St =s] (6.3)

= E⇡[Rt+1 + �Gt+1 | St =s] (from (3.9))

= E⇡[Rt+1 + �v⇡(St+1) | St =s] . (6.4)

Roughly speaking, Monte Carlo methods use an estimate of (6.3) as a target, whereas
DP methods use an estimate of (6.4) as a target. The Monte Carlo target is an estimate
because the expected value in (6.3) is not known; a sample return is used in place of the
real expected return. The DP target is an estimate not because of the expected values,
which are assumed to be completely provided by a model of the environment, but because
v⇡(St+1) is not known and the current estimate, V (St+1), is used instead. The TD target
is an estimate for both reasons: it samples the expected values in (6.4) and it uses the
current estimate V instead of the true v⇡. Thus, TD methods combine the sampling of
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7. (Challenge Question) In this question we consider the variance of the TD target, Rt+1 +
γV (St+1) compared to the variance of the Monte Carlo target, Gt. Let’s assume an idealized
setting, where we have found a V that exactly equals vπ. We can show that, in this case,
the variance of the Monte Carlo target is greater than or equal to the variance of the TD
target. Note that variance of the targets is a factor in learning speed, where lower variance
targets typically allow for faster learning. Show that the Monte Carlo target has at least
as high of variance as the TD target, using the following decomposition, called the Law of
Total Variance

Var(Gt) = E[Var(Gt|St+1)] + Var(E[Gt|St+1]).

Note that the above means the variance of the return given state St = s: Var(Gt|St = s).
We omit the given St = s from the above, to make it more readable, but implicitly it is
there. Further, to better understand the double expectations,

E[Gt] = E[E[Gt|St+1]] =
∑

s′∈S

p(s′|St = s)E[Gt|St+1].

The outer expectation is over St+1, with the inner expectation computed given St+1. Simi-
larly,

E[Var(Gt|St+1)] = E[E[Gt|St+1]] =
∑

s′∈S

p(s′|St = s)Var[Gt|St+1].

To answer the above question, try to simplify Var(E[Gt|St+1]) by showing that E[Gt|St+1] =
Rt+1 + γV (St+1). Notice that this is only true because V (St+1) = vπ(St+1). Then conclude
that this implies

Var(Gt) ≥ Var(Rt+1 + γV (St+1)).
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