Bellman Equation for $v_{\pi}(s)$

Stuff we want to write $v_{\pi}(s)$ in terms of:

$$\pi(a|s) \stackrel{\text{def}}{=} \Pr(A_t = a|S_t = s)$$
$$p(s', r|s, a) \stackrel{\text{def}}{=} \Pr(S_{t+1} = s', R_{t+1} = r|S_t = s, A_t = a)$$

Partition theorem or law of total expectation:

$$\mathbb{E}[X] = \sum_{y} \Pr(Y = y) \mathbb{E}[X | Y = y]$$
 (1)

Definition of $v_{\pi}(s)$:

$$v_{\pi}(s) \stackrel{\text{def}}{=} \mathbb{E}_{\pi} [G_t | S_t = s]$$

Pull one reward out of the return:

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[R_{t+1} + \gamma G_{t+1} \middle| S_t = s \right]$$

Apply Equation 1 to condition the expectation on actions:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \mathbb{E}_{\pi} [R_{t+1} + \gamma G_{t+1} | S_t = s, A_t = a]$$

Split the expectation of a sum into a sum of expectations (note that given an action, the expected immediate reward doesn't depend on the policy):

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left(\mathbb{E} \left[R_{t+1} \middle| S_{t} = s, A_{t} = a \right] + \gamma \mathbb{E}_{\pi} \left[G_{t+1} \middle| S_{t} = s, A_{t} = a \right] \right)$$

Write expected immediate reward in terms of p(s', r|s, a):

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left(\sum_{r} r \sum_{s'} p(s', r|s, a) + \gamma \mathbb{E}_{\pi} \left[G_{t+1} \middle| S_{t} = s, A_{t} = a \right] \right)$$

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left(\sum_{s', r} p(s', r|s, a) r + \gamma \mathbb{E}_{\pi} \left[G_{t+1} \middle| S_{t} = s, A_{t} = a \right] \right)$$

Apply Equation 1 to condition the other expectation on the next state:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left(\sum_{s',r} p(s',r|s,a)r + \gamma \sum_{s',r} p(s',r|s,a) \mathbb{E}_{\pi} \left[G_{t+1} \middle| S_{t} = s, A_{t} = a, S_{t+1} = s' \right] \right)$$

By the Markov property, knowing S_{t+1} makes the expectation independent of S_t and A_t :

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left(\sum_{s',r} p(s',r|s,a)r + \gamma \sum_{s',r} p(s',r|s,a) \mathbb{E}_{\pi} \left[G_{t+1} \middle| S_{t+1} = s' \right] \right)$$

Acknowledging that $v_{\pi}(s') = \mathbb{E}_{\pi}[G_{t+1}|S_{t+1} = s']$, and combining the summations:

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \left(\sum_{s',r} p(s',r|s,a)r + \gamma \sum_{s',r} p(s',r|s,a)v_{\pi}(s') \right)$$
$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left(r + \gamma v_{\pi}(s') \right)$$