
Optimization



Why should you care about the 
solution strategies?

• Understanding the optimization approaches behind the 
algorithms makes you more effectively choose which 
algorithm to run 

• Understanding the optimization approaches makes you 
formalize your problem more effectively
• otherwise you might formalize a very hard optimization problem; 

sometimes with minor modifications, can significantly simplify for the 
solvers, without impacting properties of solution significantly 

• When you want to do something outside the given packages 
or solvers (which is often true)

• …also its fun!
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Thought questions

• Many questions about existence and finding optimal solution
• e.g., “…What if the maximum likelihood estimation of a parameter 

does not exist?…”

• e.g., “…Do we always assume convex objectives?…”

• e.g., How can we find the global solution, and not get stuck in local 
minima or saddlepoints?

• e.g., Are local minima good enough? 

• e.g., How do we pick starting points?
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Optimality
• We will not only deal with convex functions

• We just have so far, and if we *can* make our optimization convex, 
then this is better

• i.e., if you have two options (convex and non-convex), and its not clear 
one is better than the other, may as well pick the convex one

• The field of optimization deals with finding optimal solutions for 
non-convex problems
• Sometimes possible, sometimes not possible

• One strategy: random restarts

• Another strategy: smart initialization approaches

• How do we pick a good starting point for gradient descent?

• Is a local minimum good enough?4



How do we pick model types? 
Such as distributions and priors?
• For most ML problems, we will pick generic distributions that 

match the type of the target

• Where do priors come from? General purpose (e.g., 
regularizers, sparsity) or specified by an expert
• e.g., imagine modelling the distribution over images of trees, with 

feature vector containing height, leave size, age, etc. An expert might 
know ranges and general relationships on these variables, to narrow 
the choice of distributions 

• Suggested in TQs: Use some data to estimate a prior. Then, 
use that prior with new data. Would this be better than simply 
doing maximum likelihood to start?
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Where does gradient descent 
come from?

• Goal is to find a stationary point, but cannot get closed form 
solution for gradient = 0

• Taylor series expansion with
• First order for gradient descent

• Second order for Newton-Raphson method (also called second-order 
gradient descent)

6



Taylor series expansion
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Appendix A

Optimization background

A.1 Second order optimization: Newton-Raphson

method

A function f(x) in the neighborhood of point x0, can be approximated using the
Taylor series as

f(x) =
1X

n=0

f (n)(x0)

n!
(x� x0)

n,

where f (n)(x0) is the n-th derivative of function f(x) evaluated at point x0. Also,
f(x) is considered to be infinitely differentiable. For practical reasons, we will
approximate this function using the first three terms of the series as

f(x) ⇡ f(x0) + (x� x0)f
0(x0) +

1

2
(x� x0)

2f 00(x0).

The optimum of this function can be found by finding the first derivative and setting
it to zero (technically, one should check the second derivative as well)

f 0(x) ⇡ f 0(x0) + (x� x0)f
00(x0) = 0.

Solving this equation for x gives us

x = x0 �
f 0(x0)

f 00(x0)
.

Note that the approach assumes that a good enough solution x0 already exists.
However, this equation, also provides a basis for an iterative process in finding the
optimum of function f(x). For example, if x(i) is the value of x in the i-th step,
then the value in step i+ 1 can be obtained as

x(i+1) = x(i) � f 0(x(i))

f 00(x(i))
. (A.1)

This method is called the Newton-Raphson method of optimization. We can gener-
alize this approach to functions of vector variables x =(x1, x2, . . . , xk). The Taylor
approximation for a vector function can be written as
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Taylor series expansion
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Function: sin x 
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Taylor series expansion: 
exponential function
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Whiteboard

• First-order and second-order gradient descent

• Big-O for these methods

• Understanding the Hessian and stepsize selection
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Gradient descent
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Recall: for error function          goal is to solvefunctions, solving for rE(w) = 0 in a closed form way is not possible. In-
stead, we start at some initial w0 (typically random), and then step in the
direction of the negative of the gradient until we reach a local minimum.
This approach is called gradient descent and is summarized in Algorithm 1.

Algorithm 1: Batch Gradient Descent(E,X,y)
1: // A non-optimized, basic implementation of batch gradient descent
2: w random vector in Rd

3: err 1
4: tolerance 10e�4

5: ↵ 0.1
6: while |E(w)� err| > tolerance do

7: // The step-size ↵ should be chosen by line-search
8: w w � ↵rE(w) = w � ↵X>(Xw � y)
9: end while

10: return w

Algorithm 2: Stochastic Gradient Descent(E,X,y)
1: w random vector in Rd

2: for t = 1, . . . , n do

3: // For some settings, we need the step-size ↵t to decrease with time
4: w w � ↵trEt(w) = w � ↵t(x>

t w � yt)xt

5: end for

6: return w

For a large number of samples n, however, computing the gradient across
all samples can be expensive or infeasible. An alternative is to approximate
the gradient less accurately with fewer samples. In stochastic approximation,
we typically approximate the gradient with one sample3, as in Algorithm 2.
Though this approach may appear to be too much of an approximation, there
is a long theoretical and empirical history indicating its effectiveness (see
for example [4, 3]). With ever increasing data-set size for many scenarios,
the generality of stochastic approximation makes it arguably the modern
approach to dealing with big data.

For specialized scenarios, there are of course other approaches. For one
example, see [9].

3
Mini-batches are a way to obtain a better approximation but remain efficient.
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Algorithm 1: Batch Gradient Descent(Err,X,y)
1: // A non-optimized, basic implementation of batch gradient descent
2: w random vector in Rd

3: err 1
4: tolerance 10e�4

5: ↵ 0.1
6: while |Err(w)� err| > tolerance do

7: err Err(w)
8: // The step-size ↵ should be chosen by line-search
9: w w � ↵rErr(w) = w � ↵X>(Xw � y)

10: return w

Algorithm 2: Stochastic Gradient Descent(Err,X,y)
1: w random vector in Rd

2: for i = 1, . . . number of epochs do

3: for t = 1, . . . , n do

4: // For many settings, we need step-size ↵t to decrease with time
5: // For example, a common choice is ↵t = ↵0t�1 or
6: // ↵t = ↵0t�1/2 for some initial ↵0, such as ↵0 = 1.0.
7: w w � ↵trErrt(w) = w � ↵t(x

>
t w � yt)xt

8: return w
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Convergence rates

• f(w_t) - f(w*) = O(1/t) (i.e., after t iterations) called sublinear 
convergence rate (and is not particularly good)
• “The longer you run the algorithm, the less progress it makes”

• To get within O(1/epsilon), need t = 1/epsilon iterations

• Linear convergence much better: t = 1/ln(epsilon)
• Consistently makes progress

• Superlinear convergence awesome: t = 1/ln ln (epsilon)
• Essentially a constant number of iterations
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Convergence rates

• First order is sublinear, for more general f: f(w_t) - f(w*) < -C/ t 
• for some constant C that depends on the stepsize and initial error

• Example: to get within epsilon accuracy, need t = C/epsilon steps

• First order is linear for “nice” f (Lipschitz and strongly convex)
• Lipschitz means function does not change too quickly, locally

• Strongly convex means function is not too flat

• Second order is superlinear! (for “nice” f)
• to get within epsilon accuracy, need t = log(log(1/epsilon)) steps 
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Second-order
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Outline Rates of Convergence Newton’s Method

Example: Newton’s Method

min f (x) := x
2 + ex

x
k+1 = x

k � f
0(xk)

f 00(xk)

x f
0(x)

1 4.7182818
0 1

�1/3 .0498646
�.3516893 .00012
�.3517337 .00000000064

In addition, one more iteration gives |f 0(x5)|  10�20.

Rates of Covergence and Newton’s Method



First-order
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Outline Rates of Convergence Newton’s Method

Example: Steepest Descent

k x
k

f (xk) f
0(xk) s

0 1 .37182818 4.7182818 0
1 0 1 1 0
2 �.5 .8565307 �0.3934693 1
3 �.25 .8413008 0.2788008 2
4 �.375 .8279143 �.0627107 3
5 �.34075 .8273473 .0297367 5
6 �.356375 .8272131 �.01254 6
7 �.3485625 .8271976 .0085768 7
8 �.3524688 .8271848 �.001987 8
9 �.3514922 .8271841 .0006528 10
10 �.3517364 .827184 �.0000072 12

Rates of Covergence and Newton’s Method

Many more iterations

Outline Rates of Convergence Newton’s Method

Example: Newton’s Method

min f (x) := x
2 + ex

x
k+1 = x

k � f
0(xk)

f 00(xk)

x f
0(x)

1 4.7182818
0 1

�1/3 .0498646
�.3516893 .00012
�.3517337 .00000000064

In addition, one more iteration gives |f 0(x5)|  10�20.

Rates of Covergence and Newton’s Method

Compared to



Gradient descent
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Recall: for error function          goal is to solvefunctions, solving for rE(w) = 0 in a closed form way is not possible. In-
stead, we start at some initial w0 (typically random), and then step in the
direction of the negative of the gradient until we reach a local minimum.
This approach is called gradient descent and is summarized in Algorithm 1.

Algorithm 1: Batch Gradient Descent(E,X,y)
1: // A non-optimized, basic implementation of batch gradient descent
2: w random vector in Rd

3: err 1
4: tolerance 10e�4

5: ↵ 0.1
6: while |E(w)� err| > tolerance do

7: // The step-size ↵ should be chosen by line-search
8: w w � ↵rE(w) = w � ↵X>(Xw � y)
9: end while

10: return w

Algorithm 2: Stochastic Gradient Descent(E,X,y)
1: w random vector in Rd

2: for t = 1, . . . , n do

3: // For some settings, we need the step-size ↵t to decrease with time
4: w w � ↵trEt(w) = w � ↵t(x>

t w � yt)xt

5: end for

6: return w

For a large number of samples n, however, computing the gradient across
all samples can be expensive or infeasible. An alternative is to approximate
the gradient less accurately with fewer samples. In stochastic approximation,
we typically approximate the gradient with one sample3, as in Algorithm 2.
Though this approach may appear to be too much of an approximation, there
is a long theoretical and empirical history indicating its effectiveness (see
for example [4, 3]). With ever increasing data-set size for many scenarios,
the generality of stochastic approximation makes it arguably the modern
approach to dealing with big data.

For specialized scenarios, there are of course other approaches. For one
example, see [9].

3
Mini-batches are a way to obtain a better approximation but remain efficient.
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Algorithm 1: Batch Gradient Descent(Err,X,y)
1: // A non-optimized, basic implementation of batch gradient descent
2: w random vector in Rd

3: err 1
4: tolerance 10e�4

5: ↵ 0.1
6: while |Err(w)� err| > tolerance do

7: err Err(w)
8: // The step-size ↵ should be chosen by line-search
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Algorithm 2: Stochastic Gradient Descent(Err,X,y)
1: w random vector in Rd

2: for i = 1, . . . number of epochs do

3: for t = 1, . . . , n do

4: // For many settings, we need step-size ↵t to decrease with time
5: // For example, a common choice is ↵t = ↵0t�1 or
6: // ↵t = ↵0t�1/2 for some initial ↵0, such as ↵0 = 1.0.
7: w w � ↵trErrt(w) = w � ↵t(x

>
t w � yt)xt

8: return w
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Line search
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Want step-size such that

↵ = argmin
↵

E(w � ↵rE(w))

Backtracking line search:

1. Start with relatively large ↵ (say ↵ = 1)

2. Check if E(w � ↵rE(w) < E(w)

3. If yes, use that ↵

4. Otherwise, decrease ↵ (e.g., ↵ = ↵/2), and check again

)



Intuition for first and second order
• Locally approximate function at current 

point

• First order: locally approximate with 
rough estimate of quadratic and step in 
the direction of the minimum of that 
approximation

• For second order, locally approximate 
as quadratic and step in the direction of 
the minimum of that quadratic function

• What happens if the true function is 
quadratic?

18

f(x) ⇡ f(x0) +rf(x0)
T · (x� x0) +

1

2
(x� x0)

T ·Hf(x0) · (x� x0) ,

where

rf(x) =

✓
@f

@x1
,
@f

@x2
, ...,

@f

@xk

◆

is the gradient of function f and

Hf(x) =

2

666664

@2f
@x2

1

@2f
@x1@x2

· · · @2f
@x1@xk

@2f
@x2@x1

@2f
@x2

2

...
. . .

@2f
@xk@x1

@2f
@x2

k

3

777775

is the Hessian matrix of function f . Here, the gradient of f and its Hessian are
evaluated at point x0. Consequently, Eq. A.1 is modified into the following form

x
(i+1) = x

(i) �
�
Hf(x(i))

��1 ·rf(x(i)), (A.2)

In Eq. A.2, both gradient and Hessian are evaluated at point x
(i).
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Newton in red



What is the second-order 
linear regression update?

19

Algorithm 1: Batch Gradient Descent(Err,X,y)
1: // A non-optimized, basic implementation of batch gradient descent
2: w random vector in Rd

3: err 1
4: tolerance 10e�4

5: ↵ 0.1
6: while |Err(w)� err| > tolerance do

7: err Err(w)
8: // The step-size ↵ should be chosen by line-search
9: w w � ↵rErr(w) = w � ↵X>(Xw � y)

10: return w

Algorithm 2: Stochastic Gradient Descent(Err,X,y)
1: w random vector in Rd

2: for i = 1, . . . number of epochs do

3: for t = 1, . . . , n do

4: // For many settings, we need step-size ↵t to decrease with time
5: // For example, a common choice is ↵t = ↵0t�1 or
6: // ↵t = ↵0t�1/2 for some initial ↵0, such as ↵0 = 1.0.
7: w w � ↵trErrt(w) = w � ↵t(x

>
t w � yt)xt

8: return w
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Quasi-second order methods

• Approximate inverse Hessian, can be much more efficient
• Imagine if you only kept the diagonal of the inverse Hessian

• How expensive would this be?

• Examples: LBFGS, low-rank approximations, Adagrad, 
Adadelta, Adam
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Batch optimization

• What are some issues with batch gradient descent?

• When might it be slow?

• Recall: O(d n) per step

21



Stochastic gradient descent

22

functions, solving for rE(w) = 0 in a closed form way is not possible. In-
stead, we start at some initial w0 (typically random), and then step in the
direction of the negative of the gradient until we reach a local minimum.
This approach is called gradient descent and is summarized in Algorithm 1.

Algorithm 1: Batch Gradient Descent(E,X,y)
1: // A non-optimized, basic implementation of batch gradient descent
2: w random vector in Rd

3: err 1
4: tolerance 10e�4
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5: end for

6: return w

For a large number of samples n, however, computing the gradient across
all samples can be expensive or infeasible. An alternative is to approximate
the gradient less accurately with fewer samples. In stochastic approximation,
we typically approximate the gradient with one sample3, as in Algorithm 2.
Though this approach may appear to be too much of an approximation, there
is a long theoretical and empirical history indicating its effectiveness (see
for example [4, 3]). With ever increasing data-set size for many scenarios,
the generality of stochastic approximation makes it arguably the modern
approach to dealing with big data.

For specialized scenarios, there are of course other approaches. For one
example, see [9].

3
Mini-batches are a way to obtain a better approximation but remain efficient.
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• Stochastic gradient descent (stochastic approximation) minimizes 
with an unbiased sample of the gradient E[rEt(w)] = rE(w)

For batch error: Ê(w) =
Pn

t=1 Et(w)
e.g., Et(w) = (x>

t w � yt)2

Ê(w) =
Pn

t=1 Et(w) = kXw � yk22
rÊ(w) =

Pn
t=1 rEt(w)

E(w) =
R
X
R
Y f(x, y)(x>w � y)2dydx



Batch gradient unbiased sample 
of true gradient
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E

1

n
rÊ(w)

�
=

1

n
E
"

nX

i=1

rEi(w)

#

=
1

n

nX

i=1

E[rEi(w)]

=
1

n

nX

i=1

E[rE(w)]

=
1

n

nX

i=1

rE(w)

= rE(w)

e.g., E[(X>
i w � Yi)Xi]



Stochastic gradient descent
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• Can also approximate gradient with more than one sample (e.g., 
mini-batch), as long as

• Proof of convergence and conditions on step-size: Robbins-Monro 
(“A Stochastic Approximation Method”, Robbins and Monro, 1951)

• A big focus in recent years in the machine learning community; 
many new approaches for improving convergence rate, reducing 
variance, etc.

E[rEt(w)] = rE(w)



Gradient descent approaches

• Commonly use stochastic gradient descent (SGD) or mini-
batch SGD, for a relatively small mini-batch size of say 32

• Mini-batch: update weights using an averaged gradient over a 
subset of 32 samples (a mini batch B)

• Approach: for one epoch (iterating over the dataset once)
• SGD with one sample: 

• SGD with mini-batch:

• If n = 1000, mini-batch b = 10, how many iterations for SGD 
and mini-batch SGD within one epoch?
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wt+1 = wt � ⌘trci(wt)

wt+1 = wt � ⌘t
X

j2Bi

rcj(wt)

Bi



How do we pick the stepsize?

• Less clear than for batch gradient descent

• Basic algorithm, the step sizes must decrease with time, but 
be non-negligible in magnitude (e.g., 1/t)

• Recent further insights into improving selection of stepsizes, 
and reducing variance (e.g., SAGA, SVG)

• Note: look up stochastic approximation as alternative name
26

1X

i=1

↵2
t < 1

1X

i=1

↵t = 1



What are the benefits of SGD?

• For batch gradient descent: to get w such that f(w) - f(w*) < 
epsilon, need O(ln(1/epsilon)) iterations
• with conditions on f (strongly convex, gradient Lipschitz continuous)

• 1 iteration of GD for linear regression:

• ln(1/0.001) approx= 7

• For stochastic gradient descent: to get w such that f(w) - f(w*) 
< epsilon, need O(1/epsilon) iterations
• with conditions on f_i (strongly convex, gradient Lipschitz continuous)

• 1 iteration of SGD for linear regression:

• 1/0.001 = 1000

27

w = w � ↵t(x
>w � yt)xt

w = w � ↵tX
>(Xw � y)

= w � ↵t

nX

i=1

(x>
i w � yi)xi



Whiteboard

• Exercise: derive an algorithm to compute the solution to l1-
regularized linear regression (i.e., MAP estimation with a 
Gaussian likelihood p(y | x, w) and Laplace prior)
• First write down the Laplacian

• Then write down the MAP optimization

• Then determine how to solve this optimization

• Next: Generalized linear models
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