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“It's a non-linear pattern with
ovtliers..... but for some reason
I'm very happy with the data.”



Reminders

Assignment should be submitted on eclass

 due Thursday

You should try to talk to TAs during the lab session and office
hours about assignment questions

My office hours are more for clarifying concepts
| have permanently moved my office hours to Thursday, from 2-4

Updates notes with a few typo fixes



Solution approach and
Prediction approach

e You learn a model to make predictions, e.g., p(x | lambda)

e Regardless of how you learn the model parameter lambda,
the model is your approximation of the true p(x | lambda)

- The way you use the model is the same

* e.g., we talked about using the most likely value as a prediction

e You can use MAP or MLE to learn the parameters

» The quality of the model will be different, based on the choice



Summary of optimal models

Expected cost introduced to formalize our objective

For classification (with uniform cost)

f*(x) = argmax {p(y|x)}.
ye)y

For regression (with squared-error cost)

£*(x) = /y up(ylx)dy = E[Y|x]

For both prediction problems, useful to obtain p(y | x) or some
statistics on p(y | x) (i.e., E[Y | X])



earning functions

 Hypothesize a functional form, e.g.

d
f(x) =) wjx;
j=1

f($1,$2) — Wo T W1L1 T W2k2

f(x1,29) = wrixs

e Then need to find the “best” parameters for this function; we
will find the parameters that best approximate E[y | x] or p(y Ix)



Optimal versus Estimated
models

The discussion about optimal models does not tell us how to
obtain f* (just what it is)

What prevents us from immediately specifying *?

1: * could be a complicated function of x, whereas we might
be restricted to simpler functions (e.g., linear functions)

2: Even if t* is In the function class we consider, we only have
a limited amount of data and so will have estimation error

Both 1 and 2 contribute to reducible error, where 1
contributes to the bias and 2 contributes to the variance

(we will talk more about bias and variance later)



Exercise: Reducible error (bias)

d
Can f(x) = ijxj always represent E[Y | x]?
j=1

No. Imaginey = wxixo

This is deterministic, so there is enough information in x to
predict y

* l.e., the stochasticity is not the problem, have zero irreducible error

Simplistic functional form means we cannot predict y



Linear versus polynomial function




Exercise: Reducible error
(variance)

Imagine again that y = w™x1x9 for some w”

Imagine this time that f(x) has the right functional form :
f(x) = wxri1x2, With

F={f:R* = R| f(z) = wrixs for w € R}

Imagine you estimate w from a batch of n samples

Does w = w™ (i.e.. zero reducible error)?
9

Is w biased?
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Let’s start with linear functions

d
f(x) =) wjx;
j=1



Linear Regression

©.9. y P f(x) = Wy + W1«
X i = size of house | i
V_I = cost of house (2 y2>? :

Figure 4.1: An example of a linear regression fitting on data set D =
{(1,1.2),(2,2.3),(3,2.3),(4,3.3)}. The task of the optimization process is

to find the best linear function f(x) = wo + wix so that the sum of squared
errors e + e35 + e3 + e5 is minimized.
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(Multiple) Linear Regression

e.g.,
x_{i1} = size of house

X_{I2} = age of house
y_I = cost of house

e%—Observation v,

—Response Plane
]
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Linear regression importance

e Many other techniques will use linear weighting of features

» including neural networks

e Often, we will add non-linearity using
* non-linear transformations of linear weighting

* non-linear transformations of features

e Becoming comfortable will linear weightings, for multiple
Inputs and outputs, is important
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Polynomial representations

1 2 9
Wo + W1 + WX~ + ...T WX
350
200 « RawData
i 3rd Order Polynomial Fit
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250 9th Order Polynomial Fit
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Reminder: Matrix multiplication




M=U=V"  Reminder: SVD
Mx =UXV'x =UX(V 'x)

Every matrix is a linear operator that can be decomposed into

' arotation (V), scaling (Sigma), and rotation (U) operation
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Whiteboard

Maximum likelihood formulation (and assumptions)
Solving the optimization

In notes: Weighted error functions, if certain data points
“matter” more than others

In notes: Predicting multiple outputs (multivariate y)
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September 26, 2019

e Assignment 1 due today
e Your thought questions will be marked soon

e | sometimes go beyond the notes in lecture, to give you extra

info and insights, but | will only expect you to know the topics
provided in the notes

« e.g., | will not require you to know what an SVD is for an exam

- But understanding sensitivity due to small singular values helps in
understanding solution quality, and bias-variance

« Questions about bias-variance will be on an exam
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Clarification: Adding a
column of ones

We have mostly ignored estimating the intercept coefficient w0

This is because we can always add a feature that is 1 (e.g., x1
= 1 for all instances)

The weight for this feature gives the intercept term

We estimate the vector w, assuming some has added a bias
unit (aka intercept unit)

* In the notes we index | from zero, and assume we have d+1
dimensional vector x

What if we don’t estimate the bias unit?
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Last time we talked about:

 Formulating regression as a maximum likelihood problem

* by assuming Y was Gaussian with mean <x, w >

e How to solve that maximum likelihood problem
by taking partial derivatives to find the stationary point

- this resulted in a system of equations, for which we can use system
solversAw =D

e Starting to understand the properties of that solution
- Sensitivity/conditioning of that linear system
« Today: Unbiasedness of the solution

- Today: Variance of the solution and relationship to singular values of X



Why do small singular values
of X matter?

Var(w (D)) = 0°E —= |~ | |
7 We will do this today

e Indicates components in the weight vector can vary more
across different dataset

e Small changes in v are magnified by division by tiny singular
values

e By would singular values be small across datasets? What
does this all really mean?

21
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When might X have very small
singular values?

e Singular values being small imply that the data lies in a lower-
dimensional space

v

i .;, £ PC1
PC2 A o %2
v *z :
o (o
k= s,
e This might happen if ~
variables are nearly co-linear; or Ciana 2 —

 there is not enough data, so it looks like the data lies in a lower-

dimensional space —> if you got more samples, it would start filling
out the space more
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Another interpretation

e |f X has small singular values, then A=< X, X > in the linear
system has small eigenvalues

 eigenvalues for A are squared singular values of X

e Consider if X has one zero singular value, then A has one zero
eigenvalue —> This means that there are infinitely many
solutions to the linear system

- A w =D has infinitely many feasible w. Which one is closest to w*?

e Similarly, for very small singular values, many solutions that
are almost equally good. Which one is best?
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Another interpretation (cont...)

e The flexibility in picking w (because there is not enough data
constraining the system) allows the least-squares solution to
fit to the noise

e |f more data had been observed, the system would not have
that w as a reasonable solution




But would the data ever really
lie In a low-dimensional space”

e |tis a bit less likely for low-dimensional input observations to
lie in a lower-dimensional

e But a common strategy is to generate an expansion,
projecting the input data up into a higher-dimensional space

e |t becomes more likely that it lies in a lower-dimensional within
that higher-dimensional space

25



Linear regression for
non-linear problems

e.g. flzr)=wy+wiz, —> f(x ijxj

e.g. f(r1,72) = wo + w11 + wWors + wW3w1T2 + waTT + W)
X P
1 I gbo(xl) qbp(.ibl)
n [ Zm Go(@n) | - | Bplan)

Figure 4.3: Transformation of an n x 1 data matrix X into an n X (p + 1)
matriz ® using a set of basis functions ¢;, 3 =0,1,...,p .

1
e W — ((I)TcIJ) &'y,



Overfitting

5
wi = (0.7,0.63)
ws = (—3.1,6.6, \‘
T ae A
2_
[
0 1 2 3 4 5

Figure 4.4: Example of a linear vs. polynomial fit on a data set shown in
Figure 4.1. The linear fit, fi(x), is shown as a solid green line, whereas the
cubic polynomial fit, f3(x), is shown as a solid blue line. The dotted red line
indicates the target linear concept.

In the higher-dimensional space with (1, x, xA2, xA3), a linear
plane can perfectly fit the four points, but not for (1, x)
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Whiteboard

e Couple of clarifications on notation

* singular values are non-negative

- dimensions of variables
e Adding a prior that prefers simpler w (12 regularizer)

e Bias and variance of linear regression solution with an 12
regularizer

* and exercise where we truncate the singular values
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October 1, 2019

Thought Questions due next Thursday (October 10)
Assignment 2 is due October 24
Projects can be done in pairs or threes

We will release a document soon on how grad students can
get bonus marks, by

* volunteering to review projects

« doing a more complete project, as the chapter of a thesis or as a
complete paper that could be submitted to a workshop/conference

Any questions?
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Why regularize?
[Xw — |3+ Allwlf3

Why would we a priori believe our weights should be close to
zero”? What if one of our coefficients needs to be big?

What happens if one magnitude of the features is really big
and another is small?

* e.g., X1 = house price (100000), x2 = number of rooms (3)

What is the disadvantage to regularizing? What does it do to
the weights?

How can we fix this problem?
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Whiteboard

e Bias-variance trade-off



@
Low Bias o
)
o &, o
[
High Bias
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Bias-variance trade-off

Low Variance High Variance

>

Optimum Model Complexity

Total Error

Variance

Bias

Pt

Model Complexity

*Nice images from: http://scott.fortmann-roe.com/docs/BiasVariance.html



http://scott.fortmann-roe.com/docs/BiasVariance.html
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Example: regularization and bias

 Picked a Gaussian prior and obtained I2 regularization

e We discussed the bias of this regularization
* no regularization was unbiased E[w] = true w

 with regularization meant E[w] was not equal to the true w

* Previously, however, mentioned that MAP and ML converge to
the same estimate

e Does that happen here? W = (XTX + )\I)_lXTy



What if don’t want the
regularization to disappear?

w=(1X'X

M) (3X )

e Implicitly, the regularization weight is lambda x t

e [tis more common to pick a fixed regularization (as above)

e Why?

- Still often picking over-parameterized models, compared to the

amount of available data

- Can improve trainability, which is desired even if there is lots of data
(e.g., |2 regularizer is strongly convex)

34
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But how do we pick lambda?

Discussed goal to minimize bias-variance trade-oft

* i.e., minimizing MSE
But, this involves knowing the true w!

Recall our actual goal: learn w to get good prediction accuracy
on new data

- Called generalization error

Alternative to directly minimize MSE: use data to determine
which choice of lambda provides good prediction accuracy



How can we tell if its a good
model?

e What if you train many different models on a batch of data,
check their accuracy on that data, and pick the best one?

» Imagine your are predicting how much energy your appliances will use
today

 You train your models on all previous data for energy use in your home

- How well will this perform in the real world?

e What if the models you are testing are only different in terms of
the regularization parameter lambda that they use? What will

you find?
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Simulating generalization error

labeled data set

training set test set

- ~ learned model

odor = a: e (400.0)
odor = p (192.0)
odor = p (2160.0)
odor = e (400.0)
- odor = p (36.0)
odor = n
spore-print-color = b: e (48.0)
spore-print-color = h: e (48.0)
= k: e (1296.0)
spore-print-color = n: e (1344.0)
spore-print-color = o: e (48.0)
spore-print-color = r: p (72.0)
spore-print-color = u: e (0.0)
I I I spore-print-color = w
gill-size = b: e (528.0)
gill-size = n

gill-spacing = c: p (32.0)
gill-spacing = d: e (0.0)
ill-spacing =
population = a: (0.0)

a: e
population = c: p (16.0)
population = n: e (0.0)
population = s: e (0.0)
population = v: e (48.0)
population = y: e (0.0)
spore-print-color = y: e (48.0)
odor = P (256.0)
odor = P (576.0)

odor = y: p (576.0)

accuracy estimate
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Simulating generalization error

Imagine you are comparing two models and get two test accuracies
with this approach (split into training and test)

Imagine model 1 has lower error than model 2. Can you be
confident that model 1 has better generalization error?

What if we split the data 90% to 10%?
What if we have a small test set?
What if we test 100 different lambda values?

Another strategy is cross-validation, with multiple training-test splits
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Picking other priors

e Picked Gaussian prior on weights

* Encodes that we want the weights to stay near zero, varying with at
most 1/lambda

e What if we had picked a different prior?

* e.g., the Laplace prior?

1

2 exp(—|r — p|/b)
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Regularization intuition

06 -

— L aplace(0,1)
e Normal(0,1)

0.5

Figure 4.5: A comparison between Gaussian and Laplace priors. The Gaus-
sian prior prefers the values to be near zero, whereas the Laplace prior more
strongly prefers the values to equal zero.
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» .. Regularization intuition

AN

1N

(a) (b)

Fig. 2. Estimation picture for (a) the lasso and (b) ridge regression

'O ¢+ +

D =00 0<p<l p=>0




11 regularization

e Feature selection, as well as preventing large weights

1 01 000 1
¢ _ |[1010001]| _
1 01 000 1

- O OO+ 0O —
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Exercise: |11 and |2
regularization

Imagine there are exactly two features x1 = x2

* |.e., only one feature for prediction, with an added redundant feature

Want to learn best linear function wO + w1 x1 + w2 x2

* e, WO + (w1l +w2) x2
What would least-squares plus 12 regularization provide?
What would least-squares plus |1 regularization provide?

What if a bit of noise is added to x2?



Why would we do feature
selection?

e Why not use all the features? It is more information?
 What settings might you care to do feature selection?

e Are there any settings where using |1 for feature selection
might be problematic?

e What is an alternative approach for feature selection?

Matching pursuit: Greedy approach where add one feature at a time
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Feature selection versus
dimensionality reduction

 Another option is to do dimensionality reduction

* e.g., project features x into a lower-dimensional space P x
e Exercise: what are the pros and cons?

o We'll talk about this more later



11 regularization

e Feature selection, as well as preventing large weight

1 01000 1 1
¢ _ [T o1o0001] _
1 01000 1

K=7

- O OO+ 0O —

e How do we solve this optimization?

min || Xw — y||5 + A|w][s
wERd

46
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How do we solve with |1
regularizer?

min [ Xw —y|l5 + A[w|

wERd

e |s there a closed form solution?

e What approaches can we take?
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Practically solving optimizations

e |n general, what are the advantages and disadvantages of the
closed form linear regression solution?

+ Simple approach: no need to add additional requirements, like
stopping rules

- Is not usually possible
- Must compute an expensive inverse
- With a large number of features, inverting large matrix

? What about a large number of samples?



