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Reminders
• Thought questions due today (submit on eclass)

• Assignment 1 due next week

• All assignments are individual: you must do the assignment yourself

• “In your head rule”

• UofA takes academic honesty very seriously; if you copy or cheat I 
will have to report you and you could be kicked out of the program

• Giving away your solution is still cheating; if someone puts pressure 
on you to give them your solution, thats a pretty terrible colleague

• Why cheat? Your personal integrity is important. In the real-world, you 
won’t be able to cheat, so start practicing now (this course is easier 
than the real-world)

• If you’re struggling a lot, such that you are considering cheating, 
come talk to me. I want to help 2



Prediction problem statement

• Data set

• Each xi is a data point or sample

• Each dimension of xi is called a feature or attribute

• Underlying assumption: features easy/easier to obtain and 
targets are difficult to observe or collect
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Chapter 3

Introduction to Prediction Problems

3.1 Problem Statement

We start by defining a data set D = {(x1, y1), (x2, y2), ..., (xn, yn)}, where
xi 2 X is the i-th object and yi 2 Y is the corresponding target designation.
We usually assume that X = Rd, in which case xi = (xi1, xi2, . . . , xik) is
a k-dimensional vector called a data point (or example or sample). Each
dimension of xi is typically called a feature or an attribute.

We generally distinguish between two related but different types of pre-
diction problems: classification and regression. Generally speaking, we have
a classification problem if Y is discrete and a regression problem when Y
is continuous. The classification problem refers to constructing a function
that for a previously unseen data point x infers (predicts) its class label y.
A particular function or algorithm that infers class labels, and is typically
optimized to minimize or maximize some objective (or fitness) function, is
referred to as a classifier or a classification model. The cardinality of Y in
classification problems is usually small, e.g. Y = {healthy, disease}. On the
other hand, the regression problem refers to constructing a model that for a
previously unseen data point x approximates the target value y as closely as
possible, where often times Y = R.

An example of a data set for classification with n = 3 data points and
k = 5 features is shown in Table 3.1. Problems in which |Y| = 2 are referred
to as binary classification problems, whereas problems in which |Y| > 2 are
referred to as multi-class classification problems. This can be more complex
as, for instance, in classification of text documents into categories such as
{sports, medicine, travel, . . .}. Here, a single document may be related to
more than one value in the set; e.g. an article on sports medicine. To account
for this, we can certainly say that Y = P({sports, medicine, travel, . . .}) and
treat the problem as multi-class classification, albeit with a very large output
space. However, it is often easier to think that more than one value of the out-
put space can be associated with any particular input. We refer to this learn-
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Data collection setting

• Assume passive setting: data has been collected, and now we 
must analyze it
• As opposed to active learning or reinforcement learning, where an 

important component is deciding where to sample (explore)

• Assume data is i.i.d.
• e.g., n flips of a coin, 

• e.g., n measurements of height, from a random sample of people

• As opposed to time series prediction (temporal connections)

• Assume data is complete 
• As opposed to missing feature information
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Predictions versus forecasting

• Often used interchangeably

• In English, they are synonyms: both about future events

• In ML, often use
• prediction to mean inferring outcomes based on some givens (e.g., 

p(y|x))

• forecast to mean inferring outcomes of future events, based on 
information up until now (e.g., p( xt | x{t-1}, …, x1))

• This is not agreed upon, but relatively standard
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Types of predictions
• The target could be anything; convenient to separate into 

different types (even though can have related approaches)

• Generally two main types discussed
• classification, e.g. 

• regression, e.g.

• Structured output often a type of classification problem
• e.g., trees, e.g., strings

• Unsupervised learning: no labels, just structure of data
• e.g., can sample be separated into two clusters?

• e.g., does the data lie on a lower dimensional manifold?
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wt [kg] ht [m] T [�C] sbp [mmHg] dbp [mmHg] y

x1 91 1.85 36.6 121 75 �1

x2 75 1.80 37.4 128 85 +1

x3 54 1.56 36.6 110 62 �1

Table 3.1: An example of a binary classification problem: prediction of a
disease state for a patient. Here, features indicate weight (wt), height (ht),
temperature (T), systolic blood pressure (sbp), and diastolic blood pressure
(dbp). The class labels indicate presence of a particular disease, e.g. diabetes.
This data set contains one positive data point (x2) and two negative data
points (x1, x3). The class label shows a disease state, i.e. yi = +1 indicates
the presence while yi = �1 indicates absence of disease.

ing task as multi-label classification and set Y = {sports, medicine, travel, . . .}.
Finally, Y can be a set of structured outputs, e.g. strings, trees, or graphs.
This classification scenario is usually referred to as structured-output learn-
ing. The cardinality of the output space in structured-output learning prob-
lems is often very high. An example of a regression problem is shown in
Table 3.2.

In both prediction scenarios, we assume that the features are easy to
collect for each object (e.g. by measuring the height of a person or the
square footage of a house), while the target variable is difficult to observe or
expensive to collect. Such situations usually benefit from the construction of
a computational model that predicts targets from a set of input values. The
model is trained using a set of input objects for which target values have
already been collected.

Observe that there does not exist a strict distinction between classifica-
tion and regression. For example, if the output space is Y = {0, 1, 2}, we
need not treat this problem as classification. This is because there exists a
relationship of order among elements of Y that can simplify model develop-
ment. For example, we can take Y = [0, 2] and simply develop a regression
model from which we can recover the original discrete values by rounding the
raw prediction outputs. The selection of a particular way of modeling de-
pends on the analyst and their knowledge of the domain as well as technical
aspects of learning.
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Example: binary classification
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Example: regression
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size [sqft] age [yr] dist [mi] inc [$] dens [ppl/mi2] y

x1 1250 5 2.85 56,650 12.5 2.35

x2 3200 9 8.21 245,800 3.1 3.95

x3 825 12 0.34 61,050 112.5 5.10

Table 3.2: An example of a regression problem: prediction of the price of a
house in a particular region. Here, features indicate the size of the house
(size) in square feet, the age of the house (age) in years, the distance from
the city center (dist) in miles, the average income in a one square mile ra-
dius (inc), and the population density in the same area (dens). The target
indicates the price a house is sold at, e.g. in hundreds of thousands of dollars.

3.2 Useful notation

In the machine learning literature we use k-tuples x = (x1, x2, . . . , xd) to
denote data points. However, often times we can benefit from the algebraic
notation, where each data point x is a column vector in the d-dimensional
Euclidean space: x = [x1 x2 . . . xd]

> 2 Rd, where > is the transpose op-
erator. Here, a linear combination of features and some set of coefficients
w = [w1 w2 . . . wd]> 2 Rd

dX

i=1

wixi = w1x1 + w2x2 + ...+ wdxd

can be expressed using an inner (dot) product of column vectors w
>
x. A

linear combination w
>
x results in a single number. Another useful notation

for such linear combinations will be hw,xi.
We will also use an n-by-d matrix x = (x>

1 ,x
>
2 , . . . ,x

>
n ) to represent the

entire set of data points and y to represent a column vector of targets. For
example, the i-th row of x represents data point x>

i
. Finally, the j-th column

of x, denoted as fj , is an n-by-1 vector which contains the values of feature
j for all data points. The notation is further presented in Figure 3.1.

3.3 Optimal classification and regression models

Our goal now is to establish the performance criteria that will be used to
evaluate predictors f : X ! Y and subsequently define optimal classification
and regression models. We start with classification and consider a situation
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Multi-class versus Multi-label

• Multi-class: must be exactly one class
• e.g., can only be one of the blood types {A, B, O, AB}

• Patient with features x (age, height, etc) has target y = A 

• …or represented as indicator vector y = [1 0 0 0]

• Multi-label: can be labeled with multiple categories
• e.g., categories for articles could be {sports, medicine, politics}

• an article can be a sports article and a medical article

• The target y = {sports, medicine} 

• … or again could be represented with the indicator vector y = [1 1 0]

 9



Exercise

• Imagine you have a binary classification problem and 
someone has given you p(y | x)

• Now you get a new sample, x

• What class might you pick (y = 0 or y = 1)?

• What if you have 4 classes (y = 0, y = 1, y = 2, y = 3)?

 10



Semi-supervised learning

• Some of your data has labels

• A large set of unlabeled data (with only the features) and 
usually a small amount of labeled data
• This seems complicated. Why not just do clustering?

• More generally, could have a dataset with missing information
• its not always worthwhile to call some attributes features and others 

labels; all of it is just data

• more generally, for new data, want to input whatever is available and 
complete whatever is missing

• tackled in an area called matrix completion

 11



Time series prediction
• Imagine have series of points x1, …, xn

• They are NOT i.i.d., rather they are temporally connected

• A common assumption (p-Markov): 

• Estimate conditional distribution/expectation using pairs

•  where inputs are                               and targets are

 12

p(xi|xi�1, . . . , x1) = p(xi|xi�1, . . . , xi�p)
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(xi�1, . . . , xi�p)
<latexit sha1_base64="c6nt0EpDmWRjt21lVigM2QfreTM=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahQi2JCLosunFZwT6gDWEymbRDJ5kwMxFLCLjxV9y4UMStP+HOv3GaZqGtBy4czrmXe+/xYkalsqxvo7S0vLK6Vl6vbGxube+Yu3sdyROBSRtzxkXPQ5IwGpG2ooqRXiwICj1Gut74eup374mQlEd3ahITJ0TDiAYUI6Ul1zyoPbgpPbWzOhwwnytZh7kQZyeuWbUaVg64SOyCVEGBlmt+DXyOk5BECjMkZd+2YuWkSCiKGckqg0SSGOExGpK+phEKiXTS/IcMHmvFhwEXuiIFc/X3RIpCKSehpztDpEZy3puK/3n9RAWXTkqjOFEkwrNFQcKg4nAaCPSpIFixiSYIC6pvhXiEBMJKx1bRIdjzLy+SzlnDthr27Xm1eVXEUQaH4AjUgA0uQBPcgBZoAwwewTN4BW/Gk/FivBsfs9aSUczsgz8wPn8AGC2WhQ==</latexit><latexit sha1_base64="c6nt0EpDmWRjt21lVigM2QfreTM=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahQi2JCLosunFZwT6gDWEymbRDJ5kwMxFLCLjxV9y4UMStP+HOv3GaZqGtBy4czrmXe+/xYkalsqxvo7S0vLK6Vl6vbGxube+Yu3sdyROBSRtzxkXPQ5IwGpG2ooqRXiwICj1Gut74eup374mQlEd3ahITJ0TDiAYUI6Ul1zyoPbgpPbWzOhwwnytZh7kQZyeuWbUaVg64SOyCVEGBlmt+DXyOk5BECjMkZd+2YuWkSCiKGckqg0SSGOExGpK+phEKiXTS/IcMHmvFhwEXuiIFc/X3RIpCKSehpztDpEZy3puK/3n9RAWXTkqjOFEkwrNFQcKg4nAaCPSpIFixiSYIC6pvhXiEBMJKx1bRIdjzLy+SzlnDthr27Xm1eVXEUQaH4AjUgA0uQBPcgBZoAwwewTN4BW/Gk/FivBsfs9aSUczsgz8wPn8AGC2WhQ==</latexit><latexit sha1_base64="c6nt0EpDmWRjt21lVigM2QfreTM=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahQi2JCLosunFZwT6gDWEymbRDJ5kwMxFLCLjxV9y4UMStP+HOv3GaZqGtBy4czrmXe+/xYkalsqxvo7S0vLK6Vl6vbGxube+Yu3sdyROBSRtzxkXPQ5IwGpG2ooqRXiwICj1Gut74eup374mQlEd3ahITJ0TDiAYUI6Ul1zyoPbgpPbWzOhwwnytZh7kQZyeuWbUaVg64SOyCVEGBlmt+DXyOk5BECjMkZd+2YuWkSCiKGckqg0SSGOExGpK+phEKiXTS/IcMHmvFhwEXuiIFc/X3RIpCKSehpztDpEZy3puK/3n9RAWXTkqjOFEkwrNFQcKg4nAaCPSpIFixiSYIC6pvhXiEBMJKx1bRIdjzLy+SzlnDthr27Xm1eVXEUQaH4AjUgA0uQBPcgBZoAwwewTN4BW/Gk/FivBsfs9aSUczsgz8wPn8AGC2WhQ==</latexit><latexit sha1_base64="c6nt0EpDmWRjt21lVigM2QfreTM=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahQi2JCLosunFZwT6gDWEymbRDJ5kwMxFLCLjxV9y4UMStP+HOv3GaZqGtBy4czrmXe+/xYkalsqxvo7S0vLK6Vl6vbGxube+Yu3sdyROBSRtzxkXPQ5IwGpG2ooqRXiwICj1Gut74eup374mQlEd3ahITJ0TDiAYUI6Ul1zyoPbgpPbWzOhwwnytZh7kQZyeuWbUaVg64SOyCVEGBlmt+DXyOk5BECjMkZd+2YuWkSCiKGckqg0SSGOExGpK+phEKiXTS/IcMHmvFhwEXuiIFc/X3RIpCKSehpztDpEZy3puK/3n9RAWXTkqjOFEkwrNFQcKg4nAaCPSpIFixiSYIC6pvhXiEBMJKx1bRIdjzLy+SzlnDthr27Xm1eVXEUQaH4AjUgA0uQBPcgBZoAwwewTN4BW/Gk/FivBsfs9aSUczsgz8wPn8AGC2WhQ==</latexit>

xi
<latexit sha1_base64="96Omxy49SPGED3hOl6/e89unjWM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Tn/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeOVnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teneXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP2CQjdg=</latexit><latexit sha1_base64="96Omxy49SPGED3hOl6/e89unjWM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Tn/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeOVnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teneXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP2CQjdg=</latexit><latexit sha1_base64="96Omxy49SPGED3hOl6/e89unjWM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Tn/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeOVnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teneXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP2CQjdg=</latexit><latexit sha1_base64="96Omxy49SPGED3hOl6/e89unjWM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Qe0oWy2k3bpZhN2N2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHssHM0nQj+hQ8pAzaqx0/9Tn/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeOVnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8SloXVc+teneXlfp1HkcRTuAUzsGDGtThFhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP2CQjdg=</latexit>

Exercise: Derive the max likelihood estimator



Thought exercise: specifying    
prediction problems

• Imagine someone has given you a database of samples
• e.g., Netflix data of people’s movie rankings, e.g click-through rate

• What do you need to consider before starting to learn a 
predictor? (without knowing much about algorithms yet)
• How do I know if my predictions are successful? What is my measure?

• What simple algorithms can I try first? What are the baselines?

• How many samples are there? Is it a large database?

• Is efficiency important?

• Is the data useful? Could it be significantly improved with different and/
or more data collection?

• How should I represent my prediction problem? 
 13



Summary so far
• We will learn parameters to distribution models

• For (joint) distributions p(x | theta) and conditional distributions p(y | x, w)

• We formalize the problem using maximum likelihood and MAP

• In maximum likelihood, we find optimal parameters theta for p(D | 
theta) (i.e., theta that makes data most likely)

• In MAP, also have expert defined prior over parameters p(theta), 
and optimize p(D | theta) p(theta) (i.e., theta that makes data 
most likely, but also satisfies prior as much as possible to balance 
the two)

• …but how does this relate to prediction? Why MAP?
 14



Optimal prediction

• We want to learn a prediction function f(x) = y

• We will need to define cost/error of a prediction
• Cost function

• For true target y, get cost

• We will see that modeling p(y | x) is useful for this task

• Want to find predictor that minimizes the expected cost
• could choose other metrics, such as minimize number of costs that 

are very large or minimize the maximum cost

 15
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Figure 3.1: Data set representation and notation. x is an n-by-k matrix
representing features and data points, whereas y is an n-by-1 vector of targets.

where the joint probability distribution p(x, y) is either known or can be
learned from data. Also, we will consider that we are given a cost function
c : Y ⇥ Y ! [0,1), where for each prediction ŷ and true target value y the
classification cost can be expressed as a constant c(ŷ, y), regardless of the
input x 2 X given to the classifier. This cost function can simply be stored
as a |Y|⇥ |Y| cost matrix.

The criterion for optimality of a classifier will be probabilistic. In par-
ticular, we are interested in minimizing the expected cost

E[C] =

ˆ
X

X

y

c(ŷ, y)p(x, y)dx

=

ˆ
X
p(x)

X

y

c(ŷ, y)p(y|x)dx,

where the integration is over the entire input space X = Rd. From this
equation, we can see that the optimal classifier can be expressed as

fBR(x) = argmin
ŷ2Y

(
X

y

c(ŷ, y)p(y|x)
)
,

for any x 2 X . We will refer to this classifier as the Bayes risk classifier.
One example where the Bayes risk classifier can be useful is the medical do-
main. Suppose our goal is to decide whether a patient with a particular set
of symptoms (x) should be sent for an additional lab test (y = 1 if yes and
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where the integration is over the entire input space X = Rd. From this
equation, we can see that the optimal classifier can be expressed as

fBR(x) = argmin
ŷ2Y

(
X

y

c(ŷ, y)p(y|x)
)
,

for any x 2 X . We will refer to this classifier as the Bayes risk classifier.
One example where the Bayes risk classifier can be useful is the medical do-
main. Suppose our goal is to decide whether a patient with a particular set
of symptoms (x) should be sent for an additional lab test (y = 1 if yes and
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Whiteboard
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• Expected cost

• Bayes optimal models

• Next topic: linear regression


