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Reminders/Comments

Midterm marks out, average about 65%
For final, | will give slightly less weight to bonus questions

The letter grades in eclass are not accurate (just show what
they were for last year)

- each year | adjust it based on performance in the course

- this year, marking scheme has changed, | have no doubt the letter
grade assignment to percentage will change

Initial drafts due today



Reasons for lost marks

The answer was wrong

The answer was sort of for a different question, or
misunderstood the question

The answer was unclear and/or stated incorrect things

| could try to guess what you meant, and sometimes | do. But, at the
same time, | have to evaluate what you actually wrote, because
otherwise | add a lot of bias

| did not give partial marks for just writing something, if the
answer was wrong

- (@Giving partial marks for wrong solutions just artificially inflates scores,
and doesn’t really fix penalties for having unclear solutions

* In the end, | scale everything anyway, but | scale something that
more accurately reflects what was given



How did everyone draw this
picture so well?

Total Error

Variance

Optimum Model Complexity

Error

s >
Model Complexity

e To clarify, bias-variance is about (a) generalization error or (b)
about getting estimated parameters to be closer to true
parameters, in terms of mean-squared error



Q3 was the most difficult

e Y=w0+wlX1+w2X2 + epsilon, with wl =0
e What do we know about p(y | x1, x2) and p(y | x1)

e | wanted you to think about independence and conditional
independence



Bonus question

Do not have a fixed batch of data, rather have a constant
stream of data (e.g., imagine you are Google), but still want to
normalize the data (either by min and max, or by mean and
stddev)

e | was looking for you to state that you could keep a running
mean or variance, possibly with an exponential weighting to
prefer newer data more

e Why reasonable and why deficient?



Topic today: Collections of
models

e Have mostly discussed learning one single “best” model
* Dbest linear regression model

* best neural network model

e Can we take advantage of multiple learned models?



Rationale

 There is no algorithm that is always the most accurate

e Different learners can use different
» Algorithms (e.g., logistic regression or SVMs)
- Parameters (e.g., regularization parameters)
- Representations (e.g., polynomial basis or kernels)

- Training sets (e.g., two different random subsamples of data)

e The problem: how to combine them



Ensembles

e Can a set of weak learners create a single strong learner?

e Answer: yes! See seminal paper: “The Strength of Weak
Learnability” Schapire, 1990

e Why do we care?

 can be easier to specify weak learners e.g., shallow decision trees,
set of neural networks with smaller number of layers, etc.

- fighting the bias-variance trade-off



Weak learners

e Weak learners: naive Bayes, logistic regression, decision
stumps (or shallow decision trees)

logistic regression decision stump

10 *some material from slides by Eric Xing: http://www.cs.cmu.edu/~epxing/Class/10701-11f/Lecture/lecture22.pdf
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Example of a decision stump

x2 > 0.48
no yes
-1

:

Decision tree provides more splits;
decision stump Is a one level decision tree



12

How learn signed prediction?

e Decision-stump outputs sign(<x, w>)

e [ogistic regression and linear regression: take learned w, and

prediction is set to sign(<x,w>)

e Support vector machines: minimize hinge loss

3.0
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2.0

1.0

0.0

=20 -7

(Green is zero-one loss
Blue Is hinge loss
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A side point about SVMs

e Support vector machine: minimize hinge loss while also
adding goal to maximize the margin

Margin / i)
T

N W X + Wy

Wo + wyir) + weixo =)
w'x 4+ wy > 0 SN

0



Weak learners

e Weak learners: naive Bayes, logistic regression, decision
stumps (or shallow decision trees)

Are good © - Low variance, don’t usually overfit
Are bad ® - High bias, can’t solve hard learning problems

14 *some material from slides by Eric Xing: http://www.cs.cmu.edu/~epxing/Class/10701-11f/Lecture/lecture22.pdf



Bias-variance tradeoft

e We encountered this trade-off for weights in linear regression

 Regqularizing introduced bias, but reduced variance

o2

MSE(4)

= Var(f) + (23ias|[é. a})E |

e More generally, when picking functions

Var(f) + Bias(f, )

How might you specity bias between functions?

15
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Voting (Ensemble methods)

e |nstead of learning a single (weak) classifier, learn many
weak classifiers that are good at different parts of the
input space

e Output class: (Weighted) vote of each classifier

Classifiers that are most “sure” will vote with more
conviction

Classifiers will be most “sure” about a particular part of the
space. On average, do better than single classifier!

. H: X - Y (-1,1)
h1(X) . h2(X) 7\
4\ . N H(X) = h1(X)+h2(X)
) ) H(X) = sign(> at ht(X))
t

X
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Voting (Ensemble methods)

e Instead of learning a single (weak) classifier, learn many

weak classifiers that are good at different parts of the
input space

Output class: (Weighted) vote of each classifier
Classifiers that are most “sure” will vote with more

conviction
Classifiers will be most “sure” about a particular part of the

space On average, do better than single classifier!

But how do you
force classifiers ht to learn about different parts of the input

space? weight the votes of different classifiers? at



Boosting [Schapire 89]

e [dea: given a weak learning algorithm, run it multiple times on
(reweighted) training data, then let learned classifiers vote

e On each iteration t:

* weight each training example by how incorrectly it was classified

- Learn a weak hypothesis — ht

» Obtain a strength for this hypothesis — at

e Final classifier: |H(X) = sign(3>at ht(X))

18



Combination of classifiers

e Suppose we have a family of component classifiers
(generating £1 labels) such as decision stumps:

h(x;6) =sign(wx, +b)

where 0= {k,w,b}

e Each decision stump pays
attention to only a single
component of the

x2 > 0.48
no yes

iInput vector

-1 1
19

w=1 k=2 b=0.48
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Combination of classifiers

e We'd like to combine the simple classifiers additively so that
the final classifier is the sign of

h(x) = ah(x;6,) +...+a, h(x;0)

where the “votes” {«;} emphasize component classifiers that
make more reliable predictions than others

Recall

e On each iteration t:

* weight each training example by how incorrectly it was classified

- Learn a weak hypothesis — ht

« Obtain a strength for this hypothesis — at
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Boosting example with
decision stumps




Boosting example with
decision stumps




AdaBoost
-

e Input:

e Nexamples Sy = {(xpy))s--es Xnoyn)}
e aweak base learner h = h(x,6)

e Initialize: equal example weights w. = I/N for all i = I..N
o Iterate forr=1...T:

1. train base learner according to weighted example set (w,,x) and obtain hypothesis
h,= h(x,6)

2. compute hypothesis error &
3. compute hypothesis weight ¢,
4. update example weights for next iteration w, ,

e Output: final hypothesis as a linear combination of A,

k
At k-th iteration, we have flz) = Z ajh(x ;05)
j=1

23



Adaboost

I
e At the kth iteration we find (any) classifier 4(x; 6,-) for which
the weighted classification error:

&= Wy, #h(x;;6,) [ P W)
i=1 i=1

IS better than chance.

e Thisis meant to be "easy" --- weak classifier

e Determine how many “votes” to assign to the new component

classifier: epsilon small,
a, =05log((1-¢,)/e,)  (1-epsilon)/epsilon is big
e stronger classifier gets more votes epsilon = 0.5 (random),

e Update the weights on the training examples: alpha =0

wr =W expi- y,a,h(x,;0,)}

k
or equivalently W, = exp(—y; f(z;)) fla) = Zl%'h(ﬂ? 05)
=

(

24
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Base learners

e Weak learners used in practice:
Decision stumps
Decision trees (e.g. C4.5 by Quinlan 1996)
- Multi-layer neural networks

Radial basis function networks

e Can base learners operate on weighted examples?

In many cases they can be modified to accept weights along with the
examples

In general, we can sample the examples (with replacement)
according to the distribution defined by the weights
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Exercise and break

e How can we modify logistic regression to use different weights
for each example?

e Can we modify naive Bayes to use different weights for each
example?
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Generalization error bounds for
Adaboost

| ~ [Td
erroriue(H) < erroriyqin(H) + O (\/ )

m

bias variance
large small T small
tradeoff
small large T large

e T — number of boosting rounds

e d-—VC dimension of weak learner, measures complexity of
classifier

e m — number of training examples
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Expected Adaboost behavior
due to overtfitting

FFFFF
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Adaboost in practice

—

o

= 10-

L _ Test Error
5.

: \( Training Error
10 100 1000
# rounds
e Boosting often, but not always

e Robust to overfitting
e Test set error decreases even after training error is zero

Why does this seem to contradict the generalization bound?



Intuition

e Even when training error becomes zero, the confidence in the
hypotheses continues to increase

e |Large margin in training (increase in confidence) reduces the
generalization error (rather than causing overfitting)

e Quantify with margin bound, to measure confidence of a
hypothesis: when a vote is taken, the more predictors
agreeing, the more confident you are in your prediction

30



Margin
margin(z,y) = yf(z) h returnsa-1ora +1
= Y>> ahy()
= Zatyht(ib’)
> oa- Y

t:he(x)=y t:he(z)#y

where y is the correct label of instance x, and a; is a normalized version of a; such that
a; > 0 and ) ,a; = 1. The expression Zt:ht(x):y a; stands for the weighted fraction of
correct votes, and ) ., )£y Ot Stands for the weighted fraction of incorrect votes. Margin
is a number between —1 and 1 as shown in Figure 4.

\ /\
Y '
Flnal His Final H is
High confidence Low confidence High confidence

see "Boosting the margin: A new explanation for the effectiveness of voting methods”,
Schapire et al. 1997

31 * from http://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe notes/0305.pdf



http://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/0305.pdf
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General Boosting

“Boosting algorithms as gradient descent”, Mason et al, 2000
Adaboost is only one of many choices, with exponential loss

Other examples and comparison: see “Cost-sensitive boosting
algorithms: Do we really need them?” Nikolaou et al., 2016

Main idea: given some loss L, (implicit) set of hypotheses and
a weak learning algorithm,

* generate hypothesis ht that point in a descent direction

» assign weight relative to how much pointing in descent direction
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Boosting and logistic regression

Logistic regression equivalent to minimizing log loss

Z IN(1 + exp(—y;f(x;))) f(x) =w0+zwj$j
7

=1

Boosting minimizes similar loss function!!

; i exp(—yif(zi)) fl@) =2 athy(@)
L t

1=1

Weighted average of weak learners

exp loss

y; = 1 Both smooth approximations
I of 0/1 loss!
0/1 loss
0 © Eric Xing @ CMU, 2006-2011 f(m?,) 33
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Any Boost

Algorithm 1 : AnyBoost

Require :
e An inner product space (&, {,)) containing functions mapping from X to
some set Y.
e A class of base classifiers F C X.
e A differentiable cost functional C': lin (F) = R.
e A weak learner £(F') that accepts F' € lin (F) and returns f € F with a
large value of — (VC(F), f).
Let Fﬂ.(I) 1= .
fort:=0to 7T do
Let fi41 := L(F}).
if —(VC(F), fi+1) <0 then
return F;.

Can be thought of as a stepsize
Choose wyy.

Let Fiyy := Fy + wig fi4a
end for
return Fry,.

How does AdaBoost fit into this?

(see “Boosting algorithms as gradient descent”, Mason et al, 2000)
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AdaBoost as AnyBoost

e | oss function is the exponential loss

C(F) = — " e(uiF(a:)

i=1

—(VC(F), f) = ——3 > wif (8)¢ (5:F (z1))

1=1

e Such an f corresponds to minimizing a weighted error with
weights

c(yiF(z;))
2?;1 C’(yiF(fEi))




Diversity of the ensemble

 An important property appears to be diversity of the ensemble

e We get to define the hypothesis space: does not have to be
homogenous (e.g., the set of linear classifiers)

e Strategies to promote this include:

» using different types of learners (e.g., naive Bayes, logistic regression
and decision trees)

* pruning learners that are similar

» random learners, which are more likely to be different than strong/
deliberate algorithms which might learn similar predictions

36 see: “Ensemble selection from libraries of models”, Caruana et al., 2004



https://dl.acm.org/citation.cfm?id=1015432
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Exercise: Can boosting be used
for regression?

Algorithm 1 : AnyBoost

Require : o _ _
e An inner product space (X, (,)) containing functions mapping from X to

some set Y.
e A class of base classifiers F C X
e A differentiable cost functional C': lin () — R.
e A weak learner £(F') that accepts F' € lin (F) and returns f € F with a
large value of — (VC(F), f).
Let Fo(z) := 0.
fort:=0toT do
Let fi41 := L(F}).
if —(VC(Ft), ft+1) <0 then
return F;.
end if
Choose Wi -
Let Fiyq := Fy + weg fi4a
end for
return Fry;.

It so, whats the loss”
How might this pseudocode change”



