Performance measures

Fall 2019



Reminders/comments

Hope you had a nice reading week!

Today: a bit more info about designing experiments, including
understanding how to measure generalization

- for your mini-project

Assignment 3 due this week

«  We will go over the gradient for NNs

Initial draft of mini-project due next week



Goal for your empirical study

e Try to keep the biases in mind when designing your
experiment

e You will not be able to obtain a perfect experiment design

e But, you can be careful about
» introducing really obviously fixable biases
* picking inappropriate algorithms
* giving some algorithms an unfair advantage

» picking inappropriate error measures



Reminder: Experimental set-up

Performance measures
Sampling: How to obtain multiple samples of performance?
Making conclusions: Statistical significance tests

Careful statistical work done on executing empirical studies;
pros and cons to each

- for a nice reference, see Evaluating Learning Algorithms: A
Classification Perspective (http://www.mohakshah.com/tutorials/
icml2012/Tutorial-ICML2012/Tutorial _at ICML_2012.html); slides in

this lecture use some of the material there

« “Prediction error estimation: a comparison of resampling methods”


http://www.mohakshah.com/tutorials/icml2012/Tutorial-ICML2012/Tutorial_at_ICML_2012.html
http://www.mohakshah.com/tutorials/icml2012/Tutorial-ICML2012/Tutorial_at_ICML_2012.html
http://www.mohakshah.com/tutorials/icml2012/Tutorial-ICML2012/Tutorial_at_ICML_2012.html

Regression objectives

We have looked at 12 error for estimating parameters (i.e., as
an objective) and to measure performance

Other options:

I1 error — can be difficult to optimize, still a useful measure of error

- smooth |1 — smooth and convex, easier to optimize, not usually used
as a measure of error (unless reporting accuracy of optimizer)

R-squared — coefficient of determination
 Variance unexplained

Percentage error — rescale by magnitude of values



R-squared measure

* Also called “coefficient of determination®  p2 _ q 5 Sres
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e The sum of squares of residuals, also called the residual sum of squares:
SOres = Z(y,- — f; )2 o The total sum of squares (proportional to the
i variance of the data):
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R-squared is monotone In
number of features

e As add more features, the R-squared measure cannot
decrease. Why?
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e |s this an issue?

e Alternative: adjusted R-squared — penalize the number of
explanatory variables (features)



Percentage error

If use error |l val1 - val2 Il, and get 0.1, is this good?

One option: percentage errors (issues?)

Mean absolute percentage error (MAPE)
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Classification terminology

True positives — samples predicted by classifier to be positive
that have true label positive

False positives — samples predicted by classifier to be
positive that have true label negative

True negatives — samples predicted by classifier to be
negative that have true label negative

False negatives — samples predicted by classifier to be
negative that have true label positive



Confusion Matrix for binary
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Why all these values to determine
classification accuracy?

e Understanding algorithm performance is multi-faceted;
reporting more than one measure is often useful

e This is especially true in classification, where important to
measure both false positives and false negatives

- In some cases, much more hazardous to have a false positive than a
false negative (or vice versa)

e Avoid issues with imbalanced datasets



12

Example of importance of

measures.

iImbalanced datasets

16 data points have class 0 (majority class)

4 data points have class 1 (minority class)

Trivial classifier: always predict majority
class

Accuracy of a trivial classifier is: 16/20 = 80%



Precision and recall

relevant elements
I 1

false negatives true negatives

e Example: when a search
engine returns 30 pages only
20 of which were relevant while
failing to return 40 additional
relevant pages, its precision is
20/30 = 2/3 while its recall is

20/60 = 1/3.
tp
recall = ;
1 —I_ tp selected elements
tp toms are relevant? toms are selected?
precision —
fp + tp

Precision = ——— Recall = ——
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TPR and FPR

e TPR =Recall =TP/(FN + TP) = TP/NumPositives

* True Positive Rate

e FPR = Recall = FP/(FP + TN) = FP/NumNegatives

 False Positive Rate



Predict positive if

ROC SpaCe o(y=1|x) > threshold

ROC Space
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ROC Curve example

e.qg., diseased people, healthy people
blood protein levels normally distributed
Parameter that changes: threshold
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Predict positive it

ROC Cu rve o(y=1|x) > threshold

Comparing ROC Curves

Threshold =0

True positive

Threshold = 1
0 0102 02040506 07 0809 1

False positive rate
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Area under the curve

AUC or AUCROC gives the area under the ROC curve

AUC is equal to the probability that a classifier will rank a
randomly chosen positive instance higher than a randomly

chosen negative one

Some issues in using AUC to compare ¢

assifiers

+ see “Measuring classifier performance: a co

nerent alternative to the

area under the ROC curve”, Hand, JMLR, 2009

 can give unequal important to a FPR or TPR for different classifiers

-+ see also Rob Holte’s nice work on Cost Curves: https://

webdocs.cs.ualberta.ca/~holte/CostCurves/
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Statistical significant test

e Can the observed results be attributed to real characteristics
of the learner under scrutiny or are they observed by chance?

 Hypothesis testing:

- State a null hypothesis, e.g., the expected errors of two classifiers is
equivalent

- Choose a statistical significance test to reject the null hypothesis;
failing to reject the null hypothesis does not mean we accept it

* Rejecting the null hypothesis gives us some confidence in the belief
that our observations did not occur merely by chance.
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Types of errors

e Type 1 error: rejecting the null hypothesis when it is true
- could occur if you select alpha too large (e.g., alpha = 0.05)

- could occur if you violate assumptions, e.g., equal variances

* Type 2 error: failure to reject the null hypothesis when it is
false

 these usually occur if we select a test with insufficient power, e.g.,
just checking if intervals overlap
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Recall our sampling approaches

e k-fold cross validation
e Monte carlo CV

e For internal validation, common to use a single validation set
or use k-fold cross validation
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Monte carlo CV

e Also called “repeated learning testing-model” or repeated
random subsampling

e Randomly sample without replacement the training set and the
test set

- or for smaller datasets, first sample the training set and use the rest
for test

e Repeat this random subsample m times to obtain m training/
test splits



k-fold CV

Randomly and evenly split into 4 non-overlapping partitions

D
20 data points

Partition 1.
Data points: 1, 3, 5, 15, 16

Partition 2.
Data points: 6, 10, 11, 14, 17

Partition 3.
Data points: 4,9, 12, 19, 20

Partition 4.
Data points: 2, 7, 8, 13, 17

e | earn model on k-1 folds and test on the hold-out fold (done k

o times); average k error estimates
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Bias for k-fold CV

Train on k-1 folds, test on the other

Each training set is only (k-1)/k as a big as the original training
set; eventually, though, we will train on the entire set

 wait, why not just remove this bias by training on only k-1 folds?

Will this bias the estimated prediction error to be higher or
lower than the true expected error?

Bias is minimized when k = n (leave-one-out), but can give a
high-variance estimate of error (still a debate on this)

k=5 o0r 10 is an in-between that balances this bias-variance
and training time



What does this tell us about a
single train-validation split?

e A single split, to put aside one validation set, is almost like k-
fold cross validation with k = 2

- though, we only actually train on one fold and test on the other

 This is likely to have higher bias, and over-estimate the true
expected error (pessimistic bias)

25
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LOOCV

e Why could this give a high-variance estimate?

* l.e., if we saw a different training set, the estimate could be quite
different

e |ts too much like having one training set, and one test set

- large correlation between k learned models

e (Can overfit parameter selection to this one training set, and
can find spurious connections to test set

- find the parameters that are the best for this training set
- if you had a different training set, maybe different parameters

 k-fold for smaller k really does learn k models that are more
significantly different, picking parameters that are “good” across
training sets you could see
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Stratified sampling

e When randomly selecting training or validation sets, we may
want to ensure that class proportions are maintained in each

selected set

labeled data set

++++++ e - - - - - - - -
training set test set
++++++ - - - - ++++++ - - - -
validation set This can be done via stratified
+++ - - sampling: first stratify instances by

class, then randomly select instances
from each class proportionally.
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Which sampling approach
should | use?

No definitive answer, mostly empirical support

For how to select k, bias-variance trade-off

- for small k, high-bias and low-variance

- for large k, low bias but high variance (e.g., leave-one-out)

« Some experiments showing that a reasonable balance is k = 10

- Also determined by computational resources; large k expensive

For how to select between sampling methods,

- repeated CV and Monte Carlo CV shown to have fewer Type 1 errors

Criteria for internal and external CV may be quite different
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Internal

e Training k models can be

expensive; want smaller k

k-fold CV a reasonable
choice because gives an
almost unbiased estimate
of accuracy

External

e Want to use hypothesis

testing, e.g., Null
Hypothesis is that the
means of these two
algorithms is the same

Want a sampling
technique that has less
Type 1 errors

Assumptions require
iIndependent samples of
error, but empirically k-fold
IS not necessarily better
than repeated sampling
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Re-sampling summary
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Experiments

“What if | cannot find any difference between the algorithms?”

- If you ran a fair experiment, with lots of repetitions (random splits of
training and test) to get a large enough number of samples of the error,
then that is a fine result

- Remember that algorithms have many parameters that can strongly
affect their performance

“How do | select parameter ranges?”

 the best is to provide a large enough range; this can be slow

“Do | have to sweep all parameters in the CV?”

* No, but remember that any choice of parameters affects your conclusion
—> It Is much less interesting to conclude that linear regression with
regularization weight = 0.1 is outperformed by Poisson regression
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Avoiding meta-parameters

Other strategies to select meta-parameters, rather than letting
data tell you the choice

We have mathematical characterizations of generalization

These allow some development of criteria to adjust training
error

* e.g., AIC criterion
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How to choose
significance tests?

Try to satisfy assumptions and use some rules of thumb

Parametric statistical tests make stronger assumptions about
the distribution of the data

Non-parametric tests make weaker assumptions, but are less
powerful (less able to reject the null hypothesis when it is false)

Selection based on type of problem
« comparing 2 algorithms on a single domain

- comparing 2 algorithms across domains

« comparing multiple algorithms across domains
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Statistical test summary

Eepeated Meazare
One—way ANOVA

Tukey Post—hoe Bonferroni—Dunn

Test Post—hoe Test

Nemenyi
Test

Parametric and
Parameiric Test Non—Parametric



35

Assumptions of the t-test

e The Normality or Pseudo-Normality Assumption: samples
come from normally distributed population (the sample size of
the testing set should be greater than 30, though this does not
give a guarantee).

e The Randomness of the Samples: The sample should be
representative of the underlying population. Therefore, the
instances of the testing set should be randomly chosen from
their underlying distribution.

e Equal Variance of the populations: The two samples come
from populations with equal variance.
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Example where assumptions of
t-test violated

e Equal Variance: variance
of C4.5 and NB cannot
be considered equal.

0.30
|

0.25
I

0.20
|

e Not warranted to use the
t-test to compare C4.5 to
NB on the Labour data.

0.15
I

0.10
|

e A better test to use is
 Welch’s t-test

0.05
|

* non-parametric alternative, | |

McNemar’s Test 1 2
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One-tailed versus two-tailed

e One-sided question: is algorithm 1 better than algorithm 27?

e Two-sided question: are algorithm 1 and 2 two different?

* |.e., either could be better

e Usually we care about one-sided
* p=Pr(T>t), where T is a random variable

- for paired t-test, little t reflects the average difference scaled by
variance and samples

+ t =average difference /[ sample std deviation x sgrt(humsamples)]
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Whiteboard

e Statistical significance tests

e Rademacher complexity



