Neural networks

Example: logistic regression and using a neural network

- The goal is still to predict p(y = 1 | x)
 - But now want this to be a more general nonlinear function of x
- Logistic regression learns W such that

$$f(\mathbf{x}\mathbf{W}) = \sigma(\mathbf{x}\mathbf{W}) = p(y = 1|\mathbf{x})$$

• Neural network learns W1 and W2 such that $p(y = 1 | \mathbf{x}) = \sigma(\mathbf{h}\mathbf{W}^{(1)}) = \sigma(\sigma(\mathbf{x}\mathbf{W}^{(2)})\mathbf{W}^{(1)}).$ $x_1 \rightarrow \mathbf{hidden}$ $x_2 \rightarrow \mathbf{hidden}$ $x_3 \rightarrow \mathbf{hidden}$ $x_4 \rightarrow \mathbf{hidden}$

No representation learning vs. neural network

GLM (e.g. logistic regression)

Two-layer neural network

An aside: Orthogonality

- Two points are orthogonal if dot product is 0
- Cosine similarity: theta angle between w and x

$$\mathbf{w}^{\top}\mathbf{x} = \|\mathbf{w}\|\|\mathbf{x}\|\cos(\theta)$$

EQUATION OF THE PLANE

Let \mathbf{x} be on the plane defined by \mathbf{w} and \mathbf{x}_0 :

$$\mathbf{w}^{T}(\mathbf{x} - \mathbf{x}_{0}) = 0$$
$$\mathbf{w}^{T}\mathbf{x} - \mathbf{w}^{T}\mathbf{x}_{0} = 0$$
$$\mathbf{w}^{T}\mathbf{x} + w_{0} = 0$$

Nonlinear decision surface

NN uses cross-entropy and sigmoid on last layer; it still learns a linear plane, just in a different space (higher-dimensional space)

6 * from http://cs231n.github.io/neural-networks-1/; see that page for a nice discussion on neural nets

Maximum likelihood problem

- The goal is to still to find parameters (i.e., all the weights in the network) that maximize the likelihood of the data
- What is p(y I x), for our NN?

 $E[Y|x] = NN(\mathbf{x}) = f_1(f_2(\mathbf{x}\mathbf{W}^{(2)})\mathbf{W}^{(1)})$ e.g., mean of Gaussian, variance σ^2 still a fixed value e.g., Bernoulli parameter p(y = 1|x) = E[Y|x] $p = NN(\mathbf{x}) = f_1(f_2(\mathbf{x}\mathbf{W}^{(2)})\mathbf{W}^{(1)})$ Gaussian: $\sum (p_i - y_i)^2$ i=1Bernoulli: $\sum \text{Cross-Entropy}(p_i, y_i)$

What if removed one connection (i.e., not fully connected)?

 $\boldsymbol{\delta}_k^{(1)} = \hat{y}_k - y_k$

$$\delta_j^{(2)} = (\mathbf{W}_{j2}^{(1)}\delta_2^{(1)})\mathbf{h}_j(1-\mathbf{h}_j)$$

- Neural networks let us learn a nonlinear representation phi(x)
 - instead of using a fixed representation, like kernels
- We derived a gradient descent update to learn these reps
- What can NNs really learn?
- How do we optimize them in practice?

Simple example of representational capabilities: XOR

Copyright © 2014 Victor Lavrenko

*see nice video Neural Networks 6: solving XOR with a hidden layer

: https://www.youtube.com/watch?v=kNPGXgzxoHw

Linearly separable now

One layer can act like a filter

- Dot-product with input x, and a weight vector w, can emphasize or filter parts of x
 - e.g., imagine x is an image, and w is zero everywhere except one small patch in the corner. It will pick out the magnitude of pixels in that small patch

¹² *awesome overview: http://cs231n.github.io/convolutional-networks/

Zooming in

 Dot-product with input x, and a weight vector w, can emphasize or filter parts of x

Input square in image (linearized): \mathbf{x} Dot product with filter: \mathbf{w} $\mathbf{x}^{\top}\mathbf{w}$ also represents similarity!

Multi-layer neural network $\mathbf{h}^{(2)} = f_3(\mathbf{x}\mathbf{W}^{(3)})$ What is phi(x) here? $\mathbf{h}^{(1)} = f_2(\mathbf{h}^{(2)}\mathbf{W}^{(2)})$ $h^{(2)}$ $\mathbf{h}^{(1)}$ $\hat{\mathbf{y}} = f_1(\mathbf{h}^{(1)}\mathbf{W}^{(1)})$ $\mathbf{W}^{(2)}$ $\mathbf{W}^{(3)}$ $\mathbf{W}^{(1)}$ output layer input layer hidden layer 1 hidden layer 2

* from <u>http://cs231n.github.io/neural-networks-1/;</u> see that page for a nice discussion on neural nets

What about more layers?

- Can consider the first N-1 layers to learn the new representation of x: phi(x)
 - this new representation is informed by prediction accuracy, unlike a fixed representation
- The last layer learns a generalized linear model on phi(x) to predict E[Y I x]: f(< phi(x), w >)
- As with previous generalizations, this last layer can:
 - use any generalized linear model transfer and loss
 - can have multivariate output y
 - can use regularizers
 - can use different costs per sample

Theory to support depth?

- The utility of more layers has been primarily an empirical observation; more theory now to support the utility of depth
 - Though still new
- Depth has shown to be particularly important for convolutional neural networks
 - each convolutional layer summarizes the previous layer, providing a hierarchical structure where depth is intuitively useful
- See: "Learning Functions: When Is Deep Better Than Shallow "<u>https://arxiv.org/abs/1603.00988</u>
- See for example: "Do Deep Nets Really Need to be Deep?" <u>https://arxiv.org/abs/1312.6184</u>

Exercise: Bias unit and adding a column of ones to GLMs

- This provides the same outcome as for linear regression
- g(E[y | x]) = x w —> bias unit in x with coefficient w0 shifts the function left or right

Exercise: bias unit

- Assume we pick a sigmoid activation
- What does it mean to add a bias unit to the input?
 - can shift the sigmoid curve left or right, just like before, for the first hidden layer
- What does it mean to add a bias unit for an interior layer?
 - can shift the sigmoid curve left or right for the next layer, without having to rely on previous layer to carefully adjust
- What does it mean to add a bias unit to the last layer (the last hidden layer before predicting y)?
 - yup, you guessed it, still the same reason

Structural choices

- The number of hidden layers
- The number of hidden nodes in each layer
- The activation functions
- How connected each layer is (maybe not fully connected)
- ...
- The network structure simply indicates which variables influence other variables (contribute to their construction); can imagine many different architectures

Tanh and rectified linear

- Two more popular transfers are tanh and rectified linear
- Tanh is balanced around 0, which seems to help learning

- Binary threshold function (perceptron): less used,
 - some notes for this approach: <u>http://www.cs.indiana.edu/~predrag/</u> <u>classes/2015springb555/9.pdf</u>

Rectified linear unit (ReLU)

- Rectified(x) = max(0, x)
 - Non-differentiable point at 0
 - Commonly gradient is 0 for x <= 0, else 1
- Recall our variable is $\theta = \mathbf{x}^\top \mathbf{w}$
- Common strategy: still use sigmoid (or tanh) with cross $\stackrel{\theta}{-}$ entropy in the last output layer, and use rectified linear units in the interior
- Variants of ReLu: Softplus(x) = ln(1+e^{x}), Leaky Relu

Exercise: changing from sigmoid to tanh

• Let's revisit the two-layer update.

$$\boldsymbol{\delta}_{j}^{(2)} = \left(\mathbf{W}_{j:}^{(1)}\boldsymbol{\delta}^{(1)}\right) \frac{\partial f_{2}(\boldsymbol{\theta}_{j}^{(2)})}{\partial \boldsymbol{\theta}_{j}^{(2)}} \qquad \qquad \boldsymbol{\delta}_{j}^{(2)} = \left(\mathbf{W}_{j:}^{(1)}\boldsymbol{\delta}^{(1)}\right) \mathbf{h}_{j}(1-\mathbf{h}_{j}) \\ \frac{\partial}{\partial \mathbf{W}_{ij}^{(2)}} = \boldsymbol{\delta}_{j}^{(2)}\mathbf{x}_{i}$$

- How does it change if we instead use f_2 = tanh, for the activation on the first layer?
 - recall: the derivative of tanh(theta) is 1-tanh^2(theta)

$$\delta_j^{(2)} = (\mathbf{W}_{j:}^{(1)} \boldsymbol{\delta}^{(1)}) (1 - \mathbf{h}_j^2)$$

Exercise: changing from sigmoid to ReLU

• Let's revisit the two-layer update.

$$\boldsymbol{\delta}_{j}^{(2)} = \left(\mathbf{W}_{j:}^{(1)}\boldsymbol{\delta}^{(1)}\right) \frac{\partial f_{2}(\boldsymbol{\theta}_{j}^{(2)})}{\partial \boldsymbol{\theta}_{j}^{(2)}} \qquad \qquad \boldsymbol{\delta}_{j}^{(2)} = \left(\mathbf{W}_{j:}^{(1)}\boldsymbol{\delta}^{(1)}\right) \mathbf{h}_{j}(1-\mathbf{h}_{j}) \\ \frac{\partial}{\partial \mathbf{W}_{ij}^{(2)}} = \boldsymbol{\delta}_{j}^{(2)}\mathbf{x}_{i}$$

- How does it change if we instead use f_2 = relu, for the activation on the first layer?
 - recall: the derivative of relu(theta) = max(0, theta) is 1 or 0

$$\delta_j^{(2)} = (\mathbf{W}_{j:}^{(1)} \boldsymbol{\delta}^{(1)}) \text{Indicator}(\mathbf{h}_j > 0)$$

Why so careful with I1 and not ReLU?

- For L1 (Lasso) used proximal operators for non-differentiable function to ensure convergence
- Why so uncareful with ReLUs?
- One answer: it seems to work
- Hypothesis: if gradient pushing input to ReLU to zero, then overshooting non-differentiable point ok —> the output value is still 0!

How do we select the loss function and activations?

- How do we select the loss function?
 - Loss is only defined for the last layer —> we use generalized linear models
- How do we select activations?
 - activation on last layer determined by GLM
 - for interior activations, its an art to decide what to use

Optimization choices

- The objective is still (mostly) smooth, but is no longer convex; is this a problem?
 - Can still use gradient descent approaches, but might get stuck in local minima or saddle points —> the chosen optimization approaches care more about getting out of such solutions
 - The initialization matters more (why?)

Initialization

- One of the key aspects that have made NNs work is better initialization strategies
- Imagine could initialize really close to the true solution
 - wouldn't that be great! We would just need to iterate a small number of steps and be done
- In general, where we initialize from can significantly impact the number of steps and the final solution
 - initialization affects how close we are to a good solution
 - initializations affects the function surface in that local region; flat function surfaces can be bad

Modern initialization strategies

- Maintain consistent variance of gradients throughout the network, to ensure that gradients do not go to zero in earlier layers
 - if activations become zero, they start to filter some of the gradient that is being passed backwards
 - if activations get very large, they magnify gradients and cause instability
- See the paper: "Understanding the difficulty of training deep feedforward neural networks", Glorot and Bengio

Impact of initialization

Activations of the hidden layers after one batch of 1000 MNIST images are passed through the NN (5 hidden layers, 100 nodes each, linear activation)

*image from https://intoli.com/blog/neural-network-initialization/

Selecting step sizes

- Can select a single stepsize for the entire network
 - That's a hard parameter to tune
- Much better to select an individual stepsize for each parameter
 - a vector stepsizes
- Quasi-second order algorithms also work for NNs
 - Adadelta and RMSProp
 - Adam and AMSGrad

Exercise: overfitting

- Imagine someone gave you a kernel representation with 1000 prototypes
 - representation is likely sparse: only a small number of features in phi(x) are active (the rest are near zero)
- Imagine you learned an NN, with one hidden layer of size 1000
- Which do you think might be more prone to overfitting?
- Is it just about number of parameters? What if use a linear activation function?

Strategies to avoid overfitting

• Early stopping

- keep a validation set, a subset of the training set
- after each epoch, check if accuracy has levelled off on the validation set; if so, stop training
- uses test accuracy rather than checking the objective is minimized
- Dropout
- Other regularizers
- New idea (counter-intuitive): make your network really big