
Neural networks



Example: logistic regression and 
using a neural network

• The goal is still to predict p(y = 1 | x)
• But now want this to be a more general nonlinear function of x

• Logistic regression learns W such that

• Neural network learns W1 and W2 such that
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and y 2 {0, 1}. If y 2 R, we use linear regression for this last layer and so learn weights
w

(2)
2 R2 such that hw

(2) approximates the true output y. If y 2 {0, 1}, we use logistic
regression for this last layer and so learn weights w(2)

2 R2 such that �(hw(2)) approximates
the true output y. ⇤

Now we consider the more general case with any d, k1,m. To provide some intuition
for this more general setting, we will begin with one hidden layer, for the sigmoid transfer
function and cross-entropy output loss. For logistic regression we estimated W 2 Rd⇥m,
with f(xW) = �(xW) ⇡ y. We will predict an output vector y 2 Rm, because it will make
later generalizations more clear-cut and make notation for the weights in each layer more
uniform. When we add a hidden layer, we have two parameter matrices W

(2)
2 Rd⇥k1 and

W
(1)

2 Rk1⇥m, where k1 is the dimension of the hidden layer

h = �(W(2)
x) =

2
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�(xW(2)
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�(xW(2)
:2 )

...
�(xW(2)

:k1
)

3

77775
2 Rk1

where the sigmoid function is applied to each entry in xW
(2) and hW

(1). This hidden layer
is the new set of features and again you will do the regular logistic regression optimization
to learn weights on h:

p(y = 1|x) = �(hW(1)) = �(�(xW(2))W(1)).

With the probabilistic model and parameter specified, we now need to derive an algo-
rithm to obtain those parameters. As before, we take a maximum likelihood approach and
derive gradient descent updates. This composition of transfers seems to complicate matters,
but we can still take the gradient w.r.t. our parameters. We simply have more parameters
now: W

(2)
2 Rk1⇥d,W(1)

2 R1⇥k1 . Once we have the gradient w.r.t. each parameter ma-
trix, we simply take a step in the direction of the negative of the gradient, as usual. The
gradients for these parameters share information; for computational efficiency, the gradient
is computed first for W

(1), and duplicate gradient information sent back to compute the
gradient for W

(2). This algorithm is typically called back propagation, which we describe
next.

In general, we can compute the gradient for any number of hidden layers. Denote
each differentiable transfer function f1, . . . , fH , ordered with f1 as the output transfer, and
k1, . . . , kH�1 as the hidden dimensions with H � 1 hidden layers. Then the output from the
neural network is

f1
⇣
f2

⇣
. . . fH�1

⇣
fH

⇣
xW

(H)
⌘
W

(H�1)
⌘
. . .

⌘
W

(1)
⌘

where W
(1)

2 Rk1⇥m, W
(2)

2 Rk2⇥k1 , . . . ,W(H)
2 Rd⇥kH�1 .

Backpropagation algorithm

We will start by deriving back propagation for two layers; the extension to multiple layers
will be more clear given this derivation. Due to the size of the network, we will often learn
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No representation learning vs. 
neural network
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GLM  
(e.g. logistic regression) Two-layer neural network

W



An aside: Orthogonality

• Two points are orthogonal if dot product is 0 
• Cosine similarity: theta angle between w and x

w>x = kwkkxk cos(✓)

90 degrees

cos(0 degrees) = 0



EQUATION OF THE PLANE



Nonlinear decision surface

6 * from http://cs231n.github.io/neural-networks-1/; see that page for a nice discussion on neural nets

NN uses cross-entropy and sigmoid on last layer; it still learns a  
linear plane, just in a different space (higher-dimensional space)

http://cs231n.github.io/neural-networks-1/


Maximum likelihood problem
• The goal is to still to find parameters (i.e., all the weights in the 

network) that maximize the likelihood of the data

• What is p(y | x), for our NN?

7

E[Y |x] = NN(x) = f1(f2(xW
(2))W(1))

e.g., mean of Gaussian, variance �2 still a fixed value

e.g., Bernoulli parameter p(y = 1|x) = E[Y |x]

p = NN(x) = f1(f2(xW
(2))W(1))

Gaussian:
nX

i=1

(pi � yi)
2

Bernoulli:
nX

i=1

Cross-Entropy(pi, yi)



What if removed one connection 
(i.e., not fully connected)?

8

Example 15: Let p(y = 1|x) be a Bernoulli distribution, with f1 and f2 both sigmoid
functions. The loss is the cross-entropy. We can derive the two-layer update rule with these
settings, by plugging-in above.

L(ŷ, y) = �y log(ŷ)� (1� y) log(1� ŷ) . cross-entropy
@L(ŷ, y)

@ŷ
= �y

ŷ
+

1� y

1� ŷ

f2(xW
(2)
:j ) = �(xW(2)

:j ) =
1

1 + exp(�xW
(2)
:j )

f1(hW
(1)
:k ) = �(hW(1)

:k ) =
1

1 + exp(�hW
(1)
:k )

@�(✓) = �(✓)(1� �(✓))

Now we can compute the backpropagation update by first propagating forward

h = �(xW(2))

ŷ = �(hW(1))

and then propagating the gradient back
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k

=
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k

)
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ŷk

+
1� yk

1� ŷk

◆
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= �yk(1� ŷk) + (1� yk)ŷk

@
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= �(1)
k

hj

�(2)
j

=
⇣
W

(1)
j: �

(1)
⌘
hj(1� hj)

@

@W(2)
ij

= �(2)
j

xi

The update simply consists of stepping in the direction of these gradients, as is usual for
gradient descent. We start with some initial W(1) and W

(2) (say filled with random values),
and then apply the gradient descent rules with these gradients. ⇤

7.2.2 Unsupervised learning and matrix factorization

Another strategy to obtaining a new representation is through matrix factorization. The
data matrix X is factorized into a dictionary D and a basis or new representation H (see
Figure 7.4). In fact, many unsupervised learning algorithms (e.g., dimensionality reduction,
sparse coding) and semi-supervised learning algorithms (e.g., supervised dictionary learning)
can actually be formulated as matrix factorizations. We will look at k-means clustering
and principal components analysis as an example. The remaining algorithms are simply
summarized in the below table. This general approach to obtaining a new representation
using factorization is called dictionary learning.
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W(2)

j

�(1)1

�(1)2

W(1)
j1

W(1)
j2W(1)

j1 no longer exists, so no update to it

Fully connected update

�(2)j = (W(1)
j2 �(1)2 )hj(1� hj)



Recap

• Neural networks let us learn a nonlinear representation phi(x)
• instead of using a fixed representation, like kernels

• We derived a gradient descent update to learn these reps

• What can NNs really learn?

• How do we optimize them in practice?

9



Simple example of 
representational capabilities: XOR

10 *see nice video Neural Networks 6: solving XOR with a hidden layer 
: https://www.youtube.com/watch?v=kNPGXgzxoHw

Feature: Is not (0,0)

Feature: Is not (1,1)



Linearly separable now
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One layer can act like a filter
• Dot-product with input x, and a weight vector w, can 

emphasize or filter parts of x
• e.g., imagine x is an image, and w is zero everywhere except one 

small patch in the corner. It will pick out the magnitude of pixels in 
that small patch

12 *awesome overview: http://cs231n.github.io/convolutional-networks/



Zooming in
• Dot-product with input x, and a weight vector w, can 

emphasize or filter parts of x

13

Input square in image (linearized): x

Dot product with filter: w

x>w also represents similarity!
<latexit sha1_base64="HQ8jomG5fGmFB8MPkT3Y8VjUa8U="></latexit><latexit sha1_base64="HQ8jomG5fGmFB8MPkT3Y8VjUa8U="></latexit><latexit sha1_base64="HQ8jomG5fGmFB8MPkT3Y8VjUa8U=">AAACknicbVFNb9QwEHXSQsvy0aVw4zKwApVLlSAqUA9QaA+txKFIbFtps6wcZ9K16tjBntAuUX4Qf4cb/wZnN0JLy0iWnt68mdF7TkslHUXR7yBcWb11e239Tu/uvfsPNvoPN0+cqazAoTDK2LOUO1RS45AkKTwrLfIiVXiaXuy3/dPvaJ00+gvNShwX/FzLXApOnpr0f75ICK+oPtJlReC+VdwiSA3S6xC22rXcyh+YvdyFBpKC0zTN66smSXrd5IEhKK3JKkFwKWkKuVSEdll+uZD/Hf6akCmXurDYBFw5Axa9AYeaHDhZSOXP0+xpA5P+INqO5gU3QdyBAevqeNL/lWRGVIVfJRR3bhRHJY1rbkkKhU0vqRyWXFx4oyMPNS/Qjet5pA0890wGubH+aYI5uzxR88K5WZF6ZWvDXe+15P96o4ryt+NatnGjFotDeaWADLT/A5m0KEjNPODCW5cCxJRbLnymrudDiK9bvglOXm3HHn9+Pdj72MWxzp6wZ2yLxewN22OH7JgNmQg2gp3gXfA+fBzuhh/C/YU0DLqZR+yfCj/9ASd3yeU=</latexit><latexit sha1_base64="HQ8jomG5fGmFB8MPkT3Y8VjUa8U="></latexit>



Multi-layer neural network

14

* from http://cs231n.github.io/neural-networks-1/; see that page for a nice discussion on neural nets

W(1)

W(2)

W(3)

h(2)

h(2) = f3(xW
(3))

h(1) = f2(h
(2)W(2))

ŷ = f1(h
(1)W(1))h(1)

What is phi(x) here?

http://cs231n.github.io/neural-networks-1/


What about more layers?
• Can consider the first N-1 layers to learn the new 

representation of x: phi(x)
• this new representation is informed by prediction accuracy, unlike a 

fixed representation

• The last layer learns a generalized linear model on phi(x) to 
predict E[Y | x]: f(< phi(x), w > )

• As with previous generalizations, this last layer can:
• use any generalized linear model transfer and loss

• can have multivariate output y

• can use regularizers

• can use different costs per sample
15



Theory to support depth?
• The utility of more layers has been primarily an empirical 

observation; more theory now to support the utility of depth
• Though still new

• Depth has shown to be particularly important for convolutional 
neural networks
• each convolutional layer summarizes the previous layer, providing a 

hierarchical structure where depth is intuitively useful

• See: “Learning Functions: When Is Deep Better Than Shallow 
”https://arxiv.org/abs/1603.00988

• See for example: “Do Deep Nets Really Need to be Deep?” 
https://arxiv.org/abs/1312.6184

16

https://arxiv.org/abs/1603.00988
https://arxiv.org/abs/1312.6184


Exercise: Bias unit and adding a 
column of ones to GLMs

• This provides the same outcome as for linear regression

• g(E[y | x]) = x w  —> bias unit in x with coefficient w0 shifts the 
function left or right

17
*Figure from http://stackoverflow.com/questions/2480650/role-of-bias-in-neural-networks

http://stackoverflow.com/questions/2480650/role-of-bias-in-neural-networks


Exercise: bias unit

• Assume we pick a sigmoid activation

• What does it mean to add a bias unit to the input?
• can shift the sigmoid curve left or right, just like before, for the first 

hidden layer

• What does it mean to add a bias unit for an interior layer?
• can shift the sigmoid curve left or right for the next layer, without 

having to rely on previous layer to carefully adjust

• What does it mean to add a bias unit to the last layer (the last 
hidden layer before predicting y)?
• yup, you guessed it, still the same reason

18



Structural choices

• The number of hidden layers 

• The number of hidden nodes in each layer

• The activation functions

• How connected each layer is (maybe not fully connected)

• …

• The network structure simply indicates which variables 
influence other variables (contribute to their construction); can 
imagine many different architectures

19



Tanh and rectified linear
• Two more popular transfers are tanh and rectified linear

• Tanh is balanced around 0, which seems to help learning 
• usually preferred to sigmoid

• Rectified linear

• Binary threshold function (perceptron): less used, 
• some notes for this approach: http://www.cs.indiana.edu/~predrag/

classes/2015springb555/9.pdf20

tanh(✓) =
exp(✓)� exp(�✓)

exp(✓) + exp(�✓)

http://www.cs.indiana.edu/~predrag/classes/2015springb555/9.pdf
http://www.cs.indiana.edu/~predrag/classes/2015springb555/9.pdf


Rectified linear unit (ReLU)

• Rectified(x) = max(0, x)
• Non-differentiable point at 0

• Commonly gradient is 0 for x <= 0, else 1

• Recall our variable is

• Common strategy: still use sigmoid (or tanh) with cross-
entropy in the last output layer, and use rectified linear units in 
the interior

• Variants of ReLu: Softplus(x) = ln(1+e^{x}), Leaky Relu

21

✓

✓ = x>w



Exercise: changing from 
sigmoid to tanh

• Let’s revisit the two-layer update.

• How does it change if we instead use f_2 = tanh, for the 
activation on the first layer?
• recall: the derivative of tanh(theta) is 1-tanh^2(theta)
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Notice that some of gradient is the same as for W(1), i.e.
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Computing these components only needs to be done once for W(1), and this information
propagated back to get the gradient for W(2). The di�erence is in the gradient ˆ◊(1)

ˆW(2) ,
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If another layer is added before W(2), then the information propagated backward is
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Example 19: Let p(y = 1|x) be a Bernoulli distribution, with f1 and f2 both sigmoid
functions. The loss is the cross-entropy. We can derive the two-layer update rule with these
settings, by plugging-in above.

L(ŷ, y) = ≠y log(ŷ) ≠ (1 ≠ y) log(1 ≠ ŷ) Û cross-entropy
ˆL(ŷ, y)

ˆŷ
= ≠

y

ŷ
+ 1 ≠ y

1 ≠ ŷ

f2(xW(2)
:j ) = ‡(xW(2)

:j ) = 1
1 + exp(≠xW(2)

:j )

f1(hW(1)
:k ) = ‡(hW(1)

:k ) = 1
1 + exp(≠hW(1)

:k )
ˆ‡(◊) = ‡(◊)(1 ≠ ‡(◊))

Now we can compute the backpropagation update by first propagating forward

h = ‡(xW(2))
ŷ = ‡(hW(1))
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Example 15: Let p(y = 1|x) be a Bernoulli distribution, with f1 and f2 both sigmoid
functions. The loss is the cross-entropy. We can derive the two-layer update rule with these
settings, by plugging-in above.
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Now we can compute the backpropagation update by first propagating forward

h = �(xW(2))
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and then propagating the gradient back
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@

@W(1)
jk

= �(1)
k

hj

�(2)
j

=
⇣
W

(1)
j: �

(1)
⌘
hj(1� hj)

@

@W(2)
ij

= �(2)
j

xi

The update simply consists of stepping in the direction of these gradients, as is usual for
gradient descent. We start with some initial W(1) and W

(2) (say filled with random values),
and then apply the gradient descent rules with these gradients. ⇤

7.2.2 Unsupervised learning and matrix factorization

Another strategy to obtaining a new representation is through matrix factorization. The
data matrix X is factorized into a dictionary D and a basis or new representation H (see
Figure 7.4). In fact, many unsupervised learning algorithms (e.g., dimensionality reduction,
sparse coding) and semi-supervised learning algorithms (e.g., supervised dictionary learning)
can actually be formulated as matrix factorizations. We will look at k-means clustering
and principal components analysis as an example. The remaining algorithms are simply
summarized in the below table. This general approach to obtaining a new representation
using factorization is called dictionary learning.
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Exercise: changing from 
sigmoid to ReLU

• Let’s revisit the two-layer update.

• How does it change if we instead use f_2 = relu, for the 
activation on the first layer?
• recall: the derivative of relu(theta) = max(0, theta) is 1 or 0
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Example 19: Let p(y = 1|x) be a Bernoulli distribution, with f1 and f2 both sigmoid
functions. The loss is the cross-entropy. We can derive the two-layer update rule with these
settings, by plugging-in above.
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+ 1 ≠ y

1 ≠ ŷ

f2(xW(2)
:j ) = ‡(xW(2)

:j ) = 1
1 + exp(≠xW(2)

:j )

f1(hW(1)
:k ) = ‡(hW(1)

:k ) = 1
1 + exp(≠hW(1)

:k )
ˆ‡(◊) = ‡(◊)(1 ≠ ‡(◊))

Now we can compute the backpropagation update by first propagating forward

h = ‡(xW(2))
ŷ = ‡(hW(1))
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Example 15: Let p(y = 1|x) be a Bernoulli distribution, with f1 and f2 both sigmoid
functions. The loss is the cross-entropy. We can derive the two-layer update rule with these
settings, by plugging-in above.

L(ŷ, y) = �y log(ŷ)� (1� y) log(1� ŷ) . cross-entropy
@L(ŷ, y)

@ŷ
= �y

ŷ
+

1� y

1� ŷ

f2(xW
(2)
:j ) = �(xW(2)

:j ) =
1

1 + exp(�xW
(2)
:j )

f1(hW
(1)
:k ) = �(hW(1)

:k ) =
1

1 + exp(�hW
(1)
:k )

@�(✓) = �(✓)(1� �(✓))

Now we can compute the backpropagation update by first propagating forward

h = �(xW(2))

ŷ = �(hW(1))

and then propagating the gradient back

�(1)
k

=
@L(ŷk,yk)

@ŷk

@f1(✓
(1)
k

)

@✓(1)
k

=

✓
�yk

ŷk

+
1� yk

1� ŷk

◆
ŷk(1� ŷk)

= �yk(1� ŷk) + (1� yk)ŷk

@

@W(1)
jk

= �(1)
k

hj

�(2)
j

=
⇣
W

(1)
j: �

(1)
⌘
hj(1� hj)

@

@W(2)
ij

= �(2)
j

xi

The update simply consists of stepping in the direction of these gradients, as is usual for
gradient descent. We start with some initial W(1) and W

(2) (say filled with random values),
and then apply the gradient descent rules with these gradients. ⇤

7.2.2 Unsupervised learning and matrix factorization

Another strategy to obtaining a new representation is through matrix factorization. The
data matrix X is factorized into a dictionary D and a basis or new representation H (see
Figure 7.4). In fact, many unsupervised learning algorithms (e.g., dimensionality reduction,
sparse coding) and semi-supervised learning algorithms (e.g., supervised dictionary learning)
can actually be formulated as matrix factorizations. We will look at k-means clustering
and principal components analysis as an example. The remaining algorithms are simply
summarized in the below table. This general approach to obtaining a new representation
using factorization is called dictionary learning.
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�(2)j = (W(1)
j: �(1))Indicator(hj > 0)



Why so careful with l1 and not 
ReLU?

• For L1 (Lasso) used proximal operators for non-differentiable 
function to ensure convergence

• Why so uncareful with ReLUs?

• One answer: it seems to work

• Hypothesis: if gradient pushing input to ReLU to zero, then 
overshooting non-differentiable point ok —> the output value 
is still 0!
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How do we select the loss 
function and activations?

• How do we select the loss function?
• Loss is only defined for the last layer —> we use generalized linear 

models

• How do we select activations?
• activation on last layer determined by GLM

• for interior activations, its an art to decide what to use
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Optimization choices

• The objective is still (mostly) smooth, but is no longer convex; 
is this a problem?
• Can still use gradient descent approaches, but might get stuck in 

local minima or saddle points —> the chosen optimization 
approaches care more about getting out of such solutions

• The initialization matters more (why?)
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Initialization

• One of the key aspects that have made NNs work is better 
initialization strategies

• Imagine could initialize really close to the true solution
• wouldn’t that be great! We would just need to iterate a small number 

of steps and be done

• In general, where we initialize from can significantly impact the 
number of steps and the final solution
• initialization affects how close we are to a good solution

• initializations affects the function surface in that local region; flat 
function surfaces can be bad
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Modern initialization strategies

• Maintain consistent variance of gradients throughout the 
network, to ensure that gradients do not go to zero in earlier 
layers
• if activations become zero, they start to filter some of the gradient 

that is being passed backwards

• if activations get very large, they magnify gradients and cause 
instability 

• See the paper: “Understanding the difficulty of training deep 
feedforward neural networks”, Glorot and Bengio 
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Impact of initialization

29 *image from https://intoli.com/blog/neural-network-initialization/

Activations of the hidden layers after one batch of 1000 MNIST images are 
passed through the NN (5 hidden layers, 100 nodes each, linear activation)



Selecting step sizes

• Can select a single stepsize for the entire network
• That’s a hard parameter to tune

• Much better to select an individual stepsize for each parameter
• a vector stepsizes

• Quasi-second order algorithms also work for NNs
• Adadelta and RMSProp

• Adam and AMSGrad
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Exercise: overfitting

• Imagine someone gave you a kernel representation with 1000 
prototypes
• representation is likely sparse: only a small number of features in 

phi(x) are active (the rest are near zero)

• Imagine you learned an NN, with one hidden layer of size 
1000

• Which do you think might be more prone to overfitting?

• Is it just about number of parameters? What if use a linear 
activation function?
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Strategies to avoid overfitting

• Early stopping
• keep a validation set, a subset of the training set

• after each epoch, check if accuracy has levelled off on the validation 
set; if so, stop training

• uses test accuracy rather than checking the objective is minimized

• Dropout

• Other regularizers

• New idea (counter-intuitive): make your network really big

32


