
Optimization



Why should you care about the 
solution strategies?

• Understanding the optimization approaches behind the 
algorithms makes you more effectively choose which 
algorithm to run 

• Understanding the optimization approaches makes you 
formalize your problem more effectively
• otherwise you might formalize a very hard optimization problem; 

sometimes with minor modifications, can significantly simplify for the 
solvers, without impacting properties of solution significantly 

• When you want to do something outside the given packages 
or solvers (which is often true)

• …also its fun!
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Gradient descent intuition
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Gradient descent
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Algorithm 1: Batch Gradient Descent(Err,X,y)
1: // A non-optimized, basic implementation of batch gradient descent
2: w random vector in Rd

3: err 1
4: tolerance 10e�4

5: ↵ 0.1
6: while |Err(w)� err| > tolerance do
7: err Err(w)

8: // The step-size ↵ should be chosen by line-search
9: w w � ↵rErr(w) = w � ↵X>

(Xw � y)
10: return w

Algorithm 2: Stochastic Gradient Descent(Err,X,y)
1: w random vector in Rd

2: for i = 1, . . . number of epochs do
3: for t = 1, . . . , n do
4: // For many settings, we need step-size ↵t to decrease with time
5: // For example, a common choice is ↵t = ↵

0

t�1 or
6: // ↵t = ↵

0

t�1/2 for some initial ↵
0

, such as ↵
0

= 1.0.
7: w w � ↵trErrt(w) = w � ↵t(x

>
t w � yt)xt

8: return w
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Comments (Oct 3, 2017)

• Assignment 1 marks released

• Thought questions 1 marks released
• Really fun questions!

• Assignment 2 released
• Heavier on programming (in python)

• Provided python code framework

• Lab this week?
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Mean and mode

• Mean is the average value, under p(x)
• As mentioned, expected value seems like the wrong (since its the not 

the value you necessarily expect to see), but such is life

• Mode is the most likely value, according to p(x)
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Purpose of the prior

• “For the MAP estimate, what is the purpose of the prior once 
we observe this data? 

• Typical (invalid) answer: “the number of samples increase, the 
MAP estimate converges to the ML estimate”
• Technically correct, but not answering the question
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Python pitfalls
• Pass by assignment (or the myriad of other terms):

• pass reference to object, and change inside function (e.g., 
list.append(“new value”), or a[0] = 1), then changes outside function

• if overwrite reference (e.g., a = np.zeros((1,1))), then ‘a’ now points to 
new object, and any changes to ‘a’ does not change the old object

• Think of ‘a’ as a pointer

• Broadcasting versus dot-product multiplication
• numpy.multiply and * do element-wise multiplication, and allow 

multiplication of variables that are not of the same dimension (which 
can sometimes make it hard to find bugs, since it “works”)

• numpy.dot does matrix multiplication

• You do not have to use the provided code, but should help
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Python code

• Main script_regression.py runs algorithms on a dataset
• loads data

• splits data

• gather errors from running algorithms

• regressionalgorithms.py contains algorithm code
• parent class Regressor

• all regression algorithms are child classes

• utils.py contains some useful additional functions
• But most of the functions in utils.py will not be useful yet
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Where does gradient descent 
come from?

• Taylor series expansion with
• First order for gradient second

• Second order for Newton-Raphson method (also called second-order 
gradient descent)
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Thought questions

• Many questions about existence and finding optimal solution
• e.g., “…What if the maximum likelihood estimation of a parameter 

does not exist?…”

• e.g., “…Do we always assume convex objectives?…”

• e.g., How can we find the global solution, and not get stuck in local 
minima or saddlepoints?

• e.g., Are local minima good enough? 
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Existence

• Does a solution for MLE always exist?

• Is it unique? Is it identifiable?
• A collection of models are identifiable if a parameter uniquely 

determine a model, 

• i.e., if model-one = model-two, then parameter-one = parameter-two

• e.g., if Gaussian(mu1, sigma) = Gaussian (mu2, sigma), then we 
know mu1 = mu2
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Optimality

• We will not only deal with convex functions
• We just have so far, and if we *can* make our optimization convex, 

then this is better

• i.e., if you have two options (convex and non-convex), and its not 
clear one is better than the other, may as well pick the convex one

• The field of optimization deals with finding optimal solutions for 
non-convex problems
• Sometimes possible, sometimes not possible

• One strategy: random restarts

• How do we pick a good starting point for gradient descent?
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Taylor series expansion
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Appendix A

Optimization background

A.1 Second order optimization: Newton-Raphson
method

A function f(x) in the neighborhood of point x0, can be approximated using the
Taylor series as

f(x) =
1
X

n=0

f (n)
(x0)

n!
(x� x0)

n,

where f (n)
(x0) is the n-th derivative of function f(x) evaluated at point x0. Also,

f(x) is considered to be infinitely differentiable. For practical reasons, we will
approximate this function using the first three terms of the series as

f(x) ⇡ f(x0) + (x� x0)f
0
(x0) +

1

2

(x� x0)
2f 00

(x0).

The optimum of this function can be found by finding the first derivative and setting
it to zero (technically, one should check the second derivative as well)

f 0
(x) ⇡ f 0

(x0) + (x� x0)f
00
(x0) = 0.

Solving this equation for x gives us

x = x0 �
f 0
(x0)

f 00
(x0)

.

Note that the approach assumes that a good enough solution x0 already exists.
However, this equation, also provides a basis for an iterative process in finding the
optimum of function f(x). For example, if x(i) is the value of x in the i-th step,
then the value in step i+ 1 can be obtained as

x(i+1)
= x(i) � f 0

(x(i)
)

f 00
(x(i)

)

. (A.1)

This method is called the Newton-Raphson method of optimization. We can gener-
alize this approach to functions of vector variables x =(x1, x2, . . . , xk

). The Taylor
approximation for a vector function can be written as
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Taylor series expansion
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Multivariate Taylor series
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f(x) ⇡ f(x0) +rf(x0)
T · (x� x0) +

1
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(x� x0)
T ·H

f(x0) · (x� x0) ,
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is the Hessian matrix of function f . Here, the gradient of f and its Hessian are
evaluated at point x0. Consequently, Eq. A.1 is modified into the following form

x(i+1)
= x(i) �

�

H
f(x(i))

��1 ·rf(x(i)
), (A.2)

In Eq. A.2, both gradient and Hessian are evaluated at point x(i).
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Whiteboard

• First-order and second-order gradient descent

• Big-O for these methods

• Understanding the Hessian and stepsize selection

18



Gradient descent

19

Recall: for error function          goal is to solvefunctions, solving for rE(w) = 0 in a closed form way is not possible. In-
stead, we start at some initial w0 (typically random), and then step in the
direction of the negative of the gradient until we reach a local minimum.
This approach is called gradient descent and is summarized in Algorithm 1.

Algorithm 1: Batch Gradient Descent(E,X,y)
1: // A non-optimized, basic implementation of batch gradient descent
2: w random vector in Rd

3: err 1
4: tolerance 10e�4

5: ↵ 0.1
6: while |E(w)� err| > tolerance do
7: // The step-size ↵ should be chosen by line-search
8: w w � ↵rE(w) = w � ↵X>

(Xw � y)
9: end while

10: return w

Algorithm 2: Stochastic Gradient Descent(E,X,y)
1: w random vector in Rd

2: for t = 1, . . . , n do
3: // For some settings, we need the step-size ↵t to decrease with time
4: w w � ↵trEt(w) = w � ↵t(x

>
t w � yt)xt

5: end for
6: return w

For a large number of samples n, however, computing the gradient across
all samples can be expensive or infeasible. An alternative is to approximate
the gradient less accurately with fewer samples. In stochastic approximation,
we typically approximate the gradient with one sample3, as in Algorithm 2.
Though this approach may appear to be too much of an approximation, there
is a long theoretical and empirical history indicating its effectiveness (see
for example [4, 3]). With ever increasing data-set size for many scenarios,
the generality of stochastic approximation makes it arguably the modern
approach to dealing with big data.

For specialized scenarios, there are of course other approaches. For one
example, see [9].

3Mini-batches are a way to obtain a better approximation but remain efficient.
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Comments (Oct. 5)

• Mini-project: first step is to find a dataset

20



Thought question

• “Does maximum likelihood always given the underlying 
distribution, in the limit?”

• Yes, if the distribution class we chose includes the true 
(underlying) distribution

21



Thought question
• “In page 41, it states that in the presence of a large dataset, 

the two approaches converge to the same model so long as  
"the prior does not have zero probability on f". If both models 
converge to the same value given increasing amounts of data, 
does it not become useful to understand how quickly either 
method approaches the true value as data increases. Since 
any realistic problem will have limiations on the amount of 
data given, how would an application working with limited data 
that may be slow or incovenient to collect choose which 
method of estimation, MAP or ML, converges to the true 
model more quickly?”

• Consistency is asymptotic, convergence rate is for finite 
sample analysis (e.g., error decreases as O(1/n))

• Would you expect MAP or ML to have a better rate?22



Line search
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Want step-size such that

↵ = argmin
↵

E(w � ↵rE(w))

Backtracking line search:

1. Start with relatively large ↵ (say ↵ = 1)

2. Check if E(w � ↵rE(w) < E(w)

3. If yes, use that ↵

4. Otherwise, decrease ↵ (e.g., ↵ = ↵/2), and check again

)



What is the second-order 
gradient descent update?
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Algorithm 1: Batch Gradient Descent(Err,X,y)
1: // A non-optimized, basic implementation of batch gradient descent
2: w random vector in Rd

3: err 1
4: tolerance 10e�4

5: ↵ 0.1
6: while |Err(w)� err| > tolerance do
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t w � yt)xt
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Intuition for first and second order
• Locally approximate function at current 

point

• For first order, locally approximate as 
linear and step in the direction of the 
minimum of that linear function

• For second order, locally approximate as 
quadratic and step in the direction of the 
minimum of that quadratic function
• a quadratic approximation is more accurate

• What happens if the true function is 
quadratic?

25
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Quasi-second order methods

• Approximate inverse Hessian, can be much more efficient
• Imagine if you only kept the diagonal of the inverse Hessian

• How expensive would this be?

• Examples: LBFGS, low-rank approximations, Adagrad, 
Adadelta, Adam
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Batch optimization

• What are some issues with batch gradient descent?

• When might it be slow?

• Recall: O(d n) per step

27



Stochastic gradient descent

28

functions, solving for rE(w) = 0 in a closed form way is not possible. In-
stead, we start at some initial w0 (typically random), and then step in the
direction of the negative of the gradient until we reach a local minimum.
This approach is called gradient descent and is summarized in Algorithm 1.

Algorithm 1: Batch Gradient Descent(E,X,y)
1: // A non-optimized, basic implementation of batch gradient descent
2: w random vector in Rd

3: err 1
4: tolerance 10e�4

5: ↵ 0.1
6: while |E(w)� err| > tolerance do
7: // The step-size ↵ should be chosen by line-search
8: w w � ↵rE(w) = w � ↵X>

(Xw � y)
9: end while

10: return w

Algorithm 2: Stochastic Gradient Descent(E,X,y)
1: w random vector in Rd

2: for t = 1, . . . , n do
3: // For some settings, we need the step-size ↵t to decrease with time
4: w w � ↵trEt(w) = w � ↵t(x

>
t w � yt)xt

5: end for
6: return w

For a large number of samples n, however, computing the gradient across
all samples can be expensive or infeasible. An alternative is to approximate
the gradient less accurately with fewer samples. In stochastic approximation,
we typically approximate the gradient with one sample3, as in Algorithm 2.
Though this approach may appear to be too much of an approximation, there
is a long theoretical and empirical history indicating its effectiveness (see
for example [4, 3]). With ever increasing data-set size for many scenarios,
the generality of stochastic approximation makes it arguably the modern
approach to dealing with big data.

For specialized scenarios, there are of course other approaches. For one
example, see [9].

3Mini-batches are a way to obtain a better approximation but remain efficient.

80

• Stochastic gradient descent (stochastic approximation) minimizes 
with an unbiased sample of the gradient E[rEt(w)] = rE(w)

For batch error:

ˆE(w) =

Pn
t=1 Et(w)

e.g., Et(w) = (x

>
t w � yt)2

ˆE(w) =

Pn
t=1 Et(w) = kXw � yk22

r ˆE(w) =

Pn
t=1 rEt(w)

E(w) =

R
X
R
Y f(x, y)(x>

w � y)2dydx



Batch gradient unbiased sample 
of true gradient
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E

1

n
rÊ(w)

�
=

1

n
E
"

nX

i=1

rEi(w)

#

=
1

n

nX

i=1

E[rEi(w)]

=
1

n

nX

i=1

E[rE(w)]

=
1

n

nX

i=1

rE(w)

= rE(w)

e.g., E[(X>
i w � Yi)Xi]



Stochastic gradient descent
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• Can also approximate gradient with more than one sample (e.g., 
mini-batch), as long as

• Proof of convergence and conditions on step-size: Robbins-Monro 
(“A Stochastic Approximation Method”, Robbins and Monro, 1951)

• A big focus in recent years in the machine learning community; 
many new approaches for improving convergence rate, reducing 
variance, etc.

E[rEt(w)] = rE(w)



How do we pick the stepsize?

• Less clear than for batch gradient descent

• Basic algorithm, the step sizes must decrease with time, but 
be non-negligible in magnitude (e.g., 1/t)

• Recent further insights into improving selection of stepsizes, 
and reducing variance (e.g., SAGA, SVG)

• Note: look up stochastic approximation as alternative name
31

1X

i=1

↵2
t < 1

1X

i=1

↵t = 1



What are the benefits of SGD?

• For batch gradient descent: to get w such that f(w) - f(w*) < 
epsilon, need O(ln(1/epsilon)) iterations
• with conditions on f (convex, gradient Lipschitz continuous)

• 1 iteration of GD for linear regression:

• ln(1/0.001) approx= 7

• For stochastic gradient descent: to get w such that f(w) - f(w*) 
< epsilon, need O(1/epsilon) iterations
• with conditions on f_i (strongly convex, gradient Lipschitz continuous)

• 1 iteration of SGD for linear regression:

• 1/0.001 = 1000
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w = w � ↵t(x
>
w � yt)xt

w = w � ↵tX
>(Xw � y)

= w � ↵t

nX

i=1

(x>
i w � yi)xi



Regularization intuition
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kXw � yk22 + �kwk1



Why regularize?

• Why would we a priori believe our weights should be close to 
zero? What if one of our coefficients needs to be big?

• What happens if one magnitude of the features is really big 
and another is small?
• e.g., x1 = house price (100000), x2 = number of rooms (3) 

• What is the disadvantage to regularizing? What does it do to 
the weights?
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kXw � yk22 + �kwk22



Why would we do feature 
selection?

• Why not use all the features? It is more information?

• What settings might you care to do feature selection?

• In such setting, do you see any issues with using Lasso?
• Where Lasso is proximal gradient descent

35



Whiteboard

• Exercise: derive an algorithm to compute the solution to l1-
regularized linear regression (i.e., MAP estimation with a 
Gaussian likelihood p(y | x, w) and Laplace prior)
• First write down the Laplacian

• Then write down the MAP optimization

• Then determine how to solve this optimization

• Next: Generalized linear models
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