
Linear regression 



Reminders

• Thought questions should be submitted on eclass

• Please list the section related to the thought question
• If it is a more general, open-ended question not exactly related to a 

section, label the question with a topic (e.g., Picking models)
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Properties of distributions

• Mean is the expected value (E[X])

• Mode is the most likely value (i.e., x with largest p(x))

• Median m is the value such that X is equally likely to fall above 
or below m: P( X ≤ m ) = P( X ≥ m )
• When we use a squared-error cost, obtain f(x) = E[Y | x]

• If we use an absolute-error cost, obtain f(x) = median ( p (y | x) )
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Summary of optimal models
• Expected cost introduced to formalize our objective

• Bayes risk function indicates best we could do
• f(x) specified for each x, rather than having some simpler 

(continuous) function class 

• can think of it as a table of values

• For classification (with uniform cost)

• For regression (with squared-error cost)
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y = �1 if not), with cost clab, in order to improve diagnosis. However, if we
do not perform a lab test and the patient is later found to have needed the
test for proper treatment, we may incur a significant penalty, say clawsuit. If
clawsuit � clab, as it is expected to be, then the classifier needs to appropri-
ately adjust its outputs to account for the cost disparity in different forms
of incorrect prediction.

In many practical situations, however, it may not be possible to define a
meaningful cost matrix and, thus, a reasonable criterion would be to mini-
mize the probability of a classifier’s error P (f(x) 6= y). This corresponds to
the situation where the cost function is defined as

c(ŷ, y) =

8

>

<

>

:

0 when y = ŷ

1 when y 6= ŷ

After plugging these values in the definition for fBR(x), the Bayes risk clas-
sifier simply becomes the maximum a posteriori (MAP) classifier. That is,

fMAP(x) = argmax

y2Y
{p(y|x)} .

Therefore, if p(y|x) is known or can be accurately learned, we are fully
equipped to make the prediction that minimizes the total cost. In other
words, we have converted the problem of minimizing the expected classifica-
tion cost or probability of error, into the problem of learning functions, more
specifically learning probability distributions.

The analysis for regression is a natural extension of that for classification.
Here too, we are interested in minimizing the expected cost of prediction of
the true target y when a predictor f(x) is used. The expected cost can be
expressed as

E[C] =

ˆ
X

ˆ
Y
c(f(x), y)p(x, y)dydx,

where c : R⇥R ! [0,1) is again some cost function between the predicted
value f(x) and the true value y. For simplicity, we will consider

c(f(x), y) = (f(x)� y)2,
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which results in

E[C] =

ˆ
X

ˆ
Y
(f(x)� y)2p(x, y)dydx

=

ˆ
X
p(x)

ˆ
Y
(f(x)� y)2p(y|x)dy

| {z }

g(f(x))

dx.

Assuming f(x) is flexible enough to be separately optimized for each unit
volume dx, we see that minimizing E[C] leads us to the problem of mini-
mizing

g(u) =

ˆ
Y
(u� y)2p(y|x)dy,

where we used a substitution u = f(x). We can now differentiate g with
respect to u as

@g(u)

@u
= 2

ˆ
Y
(u� y)p(y|x)dy = 0

=) u

ˆ
Y
p(y|x)dy

| {z }

=1

=

ˆ
Y
yp(y|x)dy

which results in the optimal solution

f⇤
(x) =

ˆ
Y
yp(y|x)dy

= E[y|x].

Therefore, the optimal regression model in the sense of minimizing the square
error between the prediction and the true target is the conditional expecta-
tion E[y|x]. It may appear that in the above equations, setting f(x) = y
would always lead to E[C] = 0. Unfortunately, this would be an invalid op-
eration because for a single input x there may be multiple possible outputs y
and they can certainly appear in the same data set. To be a well-defined func-
tion, f(x) must always have the same output for the same input. E[C] = 0

can only be achieved if p(y|x) is a delta function for every x.
Having found the optimal regression model, we can now write the ex-

pected cost in the cases of both optimal and suboptimal models f(x). That
is, we are interested in expressing E[C] when
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Learning functions

• Hypothesize a functional form, e.g.

• Then need to find the “best” parameters for this function; we 
will find the parameters that best approximate E[y | x]
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f(x) =
dX

j=1

wjxj

f(x1, x2) = w0 + w1x1 + w2x2

f(x1, x2) = wx1x2

...



Exercise: Reducible error
• Can                                      always represent E[Y | x]?

• No. Imagine y

• This is deterministic, so there is enough information in x to 
predict y 
• i.e., the stochasticity is not the problem, have zero irreducible error

• Rather simplistic functional form means we cannot predict y
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f(x) =
dX

j=1

wjxj

f(x1, x2) = wx1x2



Linear versus polynomial function
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Figure 4.4: Example of a linear vs. polynomial fit on a data set shown in
Figure 4.1. The linear fit, f1(x), is shown as a solid green line, whereas the
cubic polynomial fit, f3(x), is shown as a solid blue line. The dotted red line
indicates the target linear concept.

as on a large discrete set of values x 2 {0, 0.1, 0.2, . . . , 10} where the target
values will be generated using the true function 1 +

x
2 .

Using a polynomial fit with degrees p = 2 and p = 3 results in w⇤
2 =

(0.575, 0.755,�0.025) and w⇤
3 = (�3.1, 6.6,�2.65, 0.35), respectively. The

sum of squared errors on D equals E(w⇤
2) = 0.221 and E(w⇤

3) ⇡ 0. Thus, the
best fit is achieved with the cubic polynomial. However, the sum of squared
errors on the outside data set reveal a poor generalization ability of the cubic
model because we obtain E(w⇤

) = 26.9, E(w⇤
2) = 3.9, and E(w⇤

3) = 22018.5.
This effect is called overfitting. Broadly speaking, overfitting is indicated by
a significant difference in fit between the data set on which the model was
trained and the outside data set on which the model is expected to be applied
(Figure 4.4). In this case, the overfitting occurred because the complexity
of the model was increased considerably, whereas the size of the data set
remained small.

One signature of overfitting is an increase in the magnitude of the coeffi-
cients. For example, while the absolute values of all coefficients in w⇤ and w⇤

2

were less than one, the values of the coefficients in w⇤
3 became significantly

larger with alternating signs (suggesting overcompensation). We will discuss
regularization in Section 4.5.2 as an approach to prevent this effect. ⇤
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Linear Regression
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Figure 4.1: An example of a linear regression fitting on data set D =

{(1, 1.2) , (2, 2.3) , (3, 2.3) , (4, 3.3)}. The task of the optimization process is
to find the best linear function f(x) = w0 + w1x so that the sum of squared
errors e21 + e22 + e23 + e24 is minimized.

For the reasons of mathematical convenience, we will look at the logarithm
(monotonic function) of the likelihood function and express the log-likelihood
as

ln(p(y|X,w)) = �
n
X

i=1

log

⇣p
2⇡�2

⌘

� 1

2�2

n
X

i=1

0

@yi �
k

X

j=0

wjxij

1

A

2

.

Given that the first term on the right-hand hand side is independent of w,
maximizing the likelihood function corresponds exactly to minimizing the
sum of squared errors

E(w) =

n
X

i=1

(f(xi)� yi)
2 . f(xi) =

k
X

j=0

wjxij

=

n
X

i=1

e2i .

Geometrically, this error is the square of the Euclidean distance between
the vector of predictions ŷ = (f(x1), f(x2), . . . , f(xn)) and the vector of
observed target values y = (y1, y2, . . . , yn). A simple example illustrating
the linear regression problem is shown in Figure 4.1.

To more explicitly see why the maximum likelihood solution corresponds
to minimizing E(w), notice that maximizing the likelihood is equivalent to
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e.g.,  
x_i = size of house 
y_i = cost of house

f(x) = w0 + w1x



(Multiple) Linear Regression

9

e.g.,  
x_{i1} = size of house 
x_{i2} = age of house 
y_i = cost of house



Linear regression importance

• Many other techniques will use linear weighting of features
• including neural networks

• Often, we will add non-linearity using
• non-linear transformations of linear weighting

• non-linear transformations of features

• Becoming comfortable will linear weightings, for multiple 
inputs and outputs, is important
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Example: regression
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y @y
@x

Ax A>

x>A A

x>x 2x

x>Ax Ax+A>x

Table 4.1: Useful derivative formulas of vectors with respect to vectors. The
derivative of vector y (say m-dimensional) with respect to vector x (say n-
dimensional) is an n ⇥ m matrix M with components Mij =

@y
j/@x

i

, i 2
{1, 2, . . . , n} and j 2 {1, 2, . . . ,m}. A derivative of scalar with respect to a
vector, e.g. the gradient, is a special case of this situation that results in an
n⇥ 1 column vector.

and, therefore, from rE(w) = 0 we find that

w⇤
= (X>X)

�1X>y. (4.1)

The next step is to find the second derivative in order to ensure that we have
not found a maximum (or saddle point). This results in

HE(w) = 2X>X,

which is a positive semi-definite matrix (why? Consider that for any vec-
tor x 6= 0, x>A>Ax = (Ax)>Ax = kAxk22 � 0, with equality only if the
columns of A are linearly dependent). Thus, we indeed have found a min-
imum. This is the global minimum because positive semi-definite Hessian
implies convexity of E(w). Furthermore, if the columns of X are linearly
independent, the Hessian is positive definite, which implies that the global
minimum is unique. We can now express the predicted target values as

ˆy = Xw⇤

= X(X>X)

�1X>y.

The matrix X(X>X)

�1X> is called the projection matrix ; we will see later
that it projects y to the column space of X.
Example 11: Consider again data set D = {(1, 1.2) , (2, 2.3) , (3, 2.3) , (4, 3.3)}
from Figure 4.1. We want to find the optimal coefficients of the least-squares
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fit for f(x) = w0 + w1x and then calculate the sum of squared errors on D
after the fit.

The OLS fitting can now be performed using

X =

2

6

6

4

1 1

1 2

1 3

1 4

3

7

7

5

, w =



w0

w1

�

, y =

2

6

6

4

1.2
2.3
2.3
3.3

3

7

7

5

,

where a column of ones was added to X to allow for a non-zero intercept
(y = w0 when x = 0). Substituting X and y into Eq. (4.1) results in
w⇤

= (0.7, 0.63) and the sum of square errors is E(w⇤
) = 0.223. ⇤

As seen in the example above, it is a standard practice to add a column of
ones to the data matrix X in order to ensure that the fitted line, or generally
a hyperplane, does not have to pass through the origin of the coordinate
system. This effect, however, can be achieved in other ways. Consider the
first component of the gradient vector

@E

@w0
= 2

n
X

i=1

0

@

k
X

j=0

wjxij � yi

1

Axi0 = 0

from which we obtain that
n
X

i=1

w0 =

n
X

i=1

yi �
k

X

j=1

wj

n
X

i=1

xij .

When all features (columns of X) are normalized to have zero mean, i.e.
when

Pn
i=1 xij = 0 for any column j, it follows that

w0 =
1

n

n
X

i=1

yi.

We see now that if the target variable is normalized to the zero mean as well,
it follows that w0 = 0 and that the column of ones is not needed.

4.2.1 Weighted error function

In some applications it is useful to consider minimizing the weighted error
function

E(w) =

n
X

i=1

ci

0

@

k
X

j=0

wjxij � yi

1

A

2

,
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Figure 3.1: Data set representation and notation. x is an n-by-k matrix
representing features and data points, whereas y is an n-by-1 vector of targets.

where the joint probability distribution p(x, y) is either known or can be
learned from data. Also, we will consider that we are given a cost function
c : Y ⇥ Y ! [0,1), where for each prediction ŷ and true target value y the
classification cost can be expressed as a constant c(ŷ, y), regardless of the
input x 2 X given to the classifier. This cost function can simply be stored
as a |Y|⇥ |Y| cost matrix.

The criterion for optimality of a classifier will be probabilistic. In par-
ticular, we are interested in minimizing the expected cost

E[C] =

ˆ
X

X

y

c(ŷ, y)p(x, y)dx

=

ˆ
X
p(x)

X

y

c(ŷ, y)p(y|x)dx,

where the integration is over the entire input space X = Rd. From this
equation, we can see that the optimal classifier can be expressed as

fBR(x) = argmin

ŷ2Y

(

X

y

c(ŷ, y)p(y|x)
)

,

for any x 2 X . We will refer to this classifier as the Bayes risk classifier.
One example where the Bayes risk classifier can be useful is the medical do-
main. Suppose our goal is to decide whether a patient with a particular set
of symptoms (x) should be sent for an additional lab test (y = 1 if yes and

53

w

fit for f(x) = w0 + w1x and then calculate the sum of squared errors on D
after the fit.
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where a column of ones was added to X to allow for a non-zero intercept
(y = w0 when x = 0). Substituting X and y into Eq. (4.1) results in
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n
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n
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We see now that if the target variable is normalized to the zero mean as well,
it follows that w0 = 0 and that the column of ones is not needed.

4.2.1 Weighted error function

In some applications it is useful to consider minimizing the weighted error
function
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0
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k
X
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wjxij � yi

1

A

2

,
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Matrix multiplication
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Whiteboard
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• Maximum likelihood formulation (and assumptions)

• Solving the optimization

• Weighted error functions, if certain data points “matter” more 
than others

• Predicting multiple outputs (multivariate y)



Comments (Sep 26, 2017)
• Assignment 1 due on Thursday

• More review of linear algebra today

14



SVD
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M = U⌃V>

Mx = U⌃V

>
x = U⌃(V>

x)



What we’ve done so far

• Discussed linear regression
• goal: obtain weights w such that < x, w> approximates E[Y | x]

• Discussed maximum likelihood formulation

• Solution: 

• Starting discussing the properties of the solution
• When is it stable? 

• Today: What does this mean for accuracy in predicting on new data?
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y @y
@x

Ax A>

x>A A
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x>Ax Ax+A>x

Table 4.1: Useful derivative formulas of vectors with respect to vectors. The
derivative of vector y (say m-dimensional) with respect to vector x (say n-
dimensional) is an n ⇥ m matrix M with components Mij =

@y
j/@x

i

, i 2
{1, 2, . . . , n} and j 2 {1, 2, . . . ,m}. A derivative of scalar with respect to a
vector, e.g. the gradient, is a special case of this situation that results in an
n⇥ 1 column vector.

and, therefore, from rE(w) = 0 we find that

w⇤
= (X>X)

�1X>y. (4.1)

The next step is to find the second derivative in order to ensure that we have
not found a maximum (or saddle point). This results in

HE(w) = 2X>X,

which is a positive semi-definite matrix (why? Consider that for any vec-
tor x 6= 0, x>A>Ax = (Ax)>Ax = kAxk22 � 0, with equality only if the
columns of A are linearly dependent). Thus, we indeed have found a min-
imum. This is the global minimum because positive semi-definite Hessian
implies convexity of E(w). Furthermore, if the columns of X are linearly
independent, the Hessian is positive definite, which implies that the global
minimum is unique. We can now express the predicted target values as

ˆy = Xw⇤

= X(X>X)

�1X>y.

The matrix X(X>X)

�1X> is called the projection matrix ; we will see later
that it projects y to the column space of X.
Example 11: Consider again data set D = {(1, 1.2) , (2, 2.3) , (3, 2.3) , (4, 3.3)}
from Figure 4.1. We want to find the optimal coefficients of the least-squares
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Example: OLS
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fit for f(x) = w0 + w1x and then calculate the sum of squared errors on D
after the fit.

The OLS fitting can now be performed using
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where a column of ones was added to X to allow for a non-zero intercept
(y = w0 when x = 0). Substituting X and y into Eq. (4.1) results in
w⇤

= (0.7, 0.63) and the sum of square errors is E(w⇤
) = 0.223. ⇤

As seen in the example above, it is a standard practice to add a column of
ones to the data matrix X in order to ensure that the fitted line, or generally
a hyperplane, does not have to pass through the origin of the coordinate
system. This effect, however, can be achieved in other ways. Consider the
first component of the gradient vector
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When all features (columns of X) are normalized to have zero mean, i.e.
when
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We see now that if the target variable is normalized to the zero mean as well,
it follows that w0 = 0 and that the column of ones is not needed.

4.2.1 Weighted error function

In some applications it is useful to consider minimizing the weighted error
function
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In Matlab, can compute

1. X>X

2. (X>X)

�1

3. (X>X)

�1X>y

X>X =


1 1 1 1
1 2 3 4

�
2

664

1 1
1 2
1 3
1 4

3

775

What if we did not add the column of 1s?



Whiteboard

• More about inverses of matrices

• Refresh about stability of the solution

• Using regularization to fix the problem

• Properties of solution:
• Bias (and underfitting)

• Variance (and overfitting)

18



Overfitting
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1

2

3

4

5

x

f3(x)

f1(x)

Figure 4.4: Example of a linear vs. polynomial fit on a data set shown in
Figure 4.1. The linear fit, f1(x), is shown as a solid green line, whereas the
cubic polynomial fit, f3(x), is shown as a solid blue line. The dotted red line
indicates the target linear concept.

as on a large discrete set of values x 2 {0, 0.1, 0.2, . . . , 10} where the target
values will be generated using the true function 1 +

x
2 .

Using a polynomial fit with degrees p = 2 and p = 3 results in w⇤
2 =

(0.575, 0.755,�0.025) and w⇤
3 = (�3.1, 6.6,�2.65, 0.35), respectively. The

sum of squared errors on D equals E(w⇤
2) = 0.221 and E(w⇤

3) ⇡ 0. Thus, the
best fit is achieved with the cubic polynomial. However, the sum of squared
errors on the outside data set reveal a poor generalization ability of the cubic
model because we obtain E(w⇤

) = 26.9, E(w⇤
2) = 3.9, and E(w⇤

3) = 22018.5.
This effect is called overfitting. Broadly speaking, overfitting is indicated by
a significant difference in fit between the data set on which the model was
trained and the outside data set on which the model is expected to be applied
(Figure 4.4). In this case, the overfitting occurred because the complexity
of the model was increased considerably, whereas the size of the data set
remained small.

One signature of overfitting is an increase in the magnitude of the coeffi-
cients. For example, while the absolute values of all coefficients in w⇤ and w⇤

2

were less than one, the values of the coefficients in w⇤
3 became significantly

larger with alternating signs (suggesting overcompensation). We will discuss
regularization in Section 4.5.2 as an approach to prevent this effect. ⇤

76

w⇤
1 = (0.7, 0.63)

w⇤
3 = (�3.1, 6.6,�2.65, 0.35)



Comments (Sep 28, 2017)

• Assignment 1 due today

• Need matplotlib for simulate.py

• Today: finish-off bias-variance

20



Terminology clarification

• What is a parameter? Any coefficients (i.e., scalars, vectors or 
matrices) that define the function you care about

• e.g., a and b are both parameters for function f

• Maximum likelihood solution: parameters for the pmf or pdf 
that make the data the most likely
• The following function is not the maximum likelihood solution 

21

f(x) =

⇢
a if x < 0
b if x � 0

f(x) = argmax

y2Y
p(y|x)



Linear regression for            
non-linear problems

22

from the nullspace). Thus, the OLS regression problem is sometimes referred
to as the minimum-norm least-squares problem.

Let us now consider situations where Ax = b has infinitely many solu-
tions, i.e. when b 2 C(A). This usually arises when r  m < n. Here,
because b is already in the column space of A, the only question is what
particular solution x will be found by the minimization procedure. As we
have seen above, the outcome of the minimization process is the solution
with the minimum L2 norm kxk2.

To summarize, the goal of the OLS regression problem is to solve Xw =

y, if it is solvable. When k < n this is not a realistic scenario in practice.
Thus, we relaxed the requirement and tried to find the point in the column
space C(X) that is closest to y. This turned out to be equivalent to minimiz-
ing the sum of square errors (or Euclidean distance) between n-dimensional
vectors Xw and y. It also turned out to be equivalent to the maximum
likelihood solution presented in Section 4.1. When n < k, a usual situation
in practice is that there are infinitely many solutions. In these situations,
our optimization algorithm will find the one with the minimum L2 norm.

4.4 Linear regression for non-linear problems

At first, it might seem that the applicability of linear regression and classifi-
cation to real-life problems is greatly limited. After all, it is not clear whether
it is realistic (most of the time) to assume that the target variable is a linear
combination of features. Fortunately, the applicability of linear regression
is broader than originally thought. The main idea is to apply a non-linear
transformation to the data matrix X prior to the fitting step, which then
enables a non-linear fit. Obtaining such a useful feature representation is a
central problem in machine learning; we will discuss this in detail in Chapter
7. Here, we will first examine a simpler expanded representation that enables
non-linear learning: polynomial curve fitting.

4.4.1 Polynomial curve fitting

We start with one-dimensional data. In OLS regression, we would look for
the fit in the following form

f(x) = w0 + w1x,
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X �
1 x1 �0(x1) ... �p(x1)

x2 ! ... ... ...
... ... ... ...

n xn �0(xn) ... �p(xn)

Figure 4.3: Transformation of an n ⇥ 1 data matrix X into an n ⇥ (p + 1)

matrix � using a set of basis functions �j, j = 0, 1, . . . , p .

where x is the data point and w = (w0, w1) is the weight vector. To achieve
a polynomial fit of degree p, we will modify the previous expression into

f(x) =
p

X

j=0

wjx
j ,

where p is the degree of the polynomial. We will rewrite this expression using
a set of basis functions as

f(x) =
p

X

j=0

wj�j(x)

= w>
�,

where �j(x) = xj and � = (�0(x),�1(x), . . . ,�p(x)). Applying this transfor-
mation to every data point in X results in a new data matrix �, as shown
in Figure 4.3.

Following the discussion from Section 4.2, the optimal set of weights is
now calculated as

w⇤
=

⇣

�>�
⌘�1

�>y.

Example 12: In Figure 4.1 we presented an example of a data set with four
data points. What we did not mention was that, given a set {x1, x2, x3, x4},
the targets were generated by using function 1 +

x
2 and then adding a mea-

surement error e = (�0.3, 0.3,�0.2, 0.3). It turned out that the optimal
coefficients w⇤

= (0.7, 0.63) were close to the true coefficients ! = (1, 0.5),
even though the error terms were relatively significant. We will now attempt
to estimate the coefficients of a polynomial fit with degrees p = 2 and p = 3.
We will also calculate the sum of squared errors on D after the fit as well
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f(x1, x2) = w0 + w1x1 + w2x2 + w3x1x2 + w4x
2
1 + w5x

2
2

e.g.

e.g.



Polynomial representations
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w0 + w1x
1 + w2x

2 + . . .+ w9x
9



Whiteboard

• Bias and variance of linear regression solutions

24



Bias-variance trade-off

25 *Nice images from: http://scott.fortmann-roe.com/docs/BiasVariance.html

We can plot four different cases representing combinations of both high and low

bias and variance.

Fig. 1 Graphical illustration of bias and variance.

1.3 Mathematical Definition
after Hastie, et al. 2009 

1

If we denote the variable we are trying to predict as  and our covariates as , we

may assume that there is a relationship relating one to the other such as 

 where the error term  is normally distributed with a mean of zero

like so .

We may estimate a model  of  using linear regressions or another

modeling technique. In this case, the expected squared prediction error at a point 

is:

This error may then be decomposed into bias and variance components:

Low Variance High Variance

Low Bias

High Bias

http://scott.fortmann-roe.com/docs/BiasVariance.html


Example: regularization and bias

• Picked a Gaussian prior and obtained l2 regularization 

• We discussed the bias of this regularization
• no regularization was unbiased E[w] = true w

• with regularization meant E[w] was not equal to the true w

• Previously, however, mentioned that MAP and ML converge to 
the same estimate

• Does that happen here?

26

w⇤ = (X>X+ �I)�1X>y



How do we pick lambda?

• Discussed goal to minimize bias-variance trade-off
• i.e., minimizing MSE

• But, this involves knowing the true w!

• Recall our actual goal: learn w to get good prediction accuracy 
on new data
• Called generalization error

• Alternative to directly minimize MSE: use data to determine 
which choice of lambda provides good prediction accuracy

27



How can we tell if its a good 
model?

28

• What if you train many different models on a batch of data, 
check their accuracy on that data, and pick the best one?
• Imagine your are predicting how much energy your appliances will use 

today

• You train your models on all previous data for energy use in your home

• How well will this perform in the real world?

• What if the models you are testing are only different in terms of 
the regularization parameter lambda that they use? What will 
you find?



Simulating generalization error
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Test sets revisited 
How can we get an unbiased estimate of the accuracy of a learned model? 
 
 

labeled data set 

training set test set 

learned model 
 

accuracy estimate 

learning 
method 



Simulating generalization error

• Now we have one model, trained similarly to how it will be 
trained, and a measure of accuracy on new data (but 
distributed identically to trained data)

• What if we pick the model with the best test accuracy? Any 
issues?
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Picking other priors

• Picked Gaussian prior on weights
• Encodes that we want the weights to stay near zero, varying with at 

most 1/lambda

• What if we had picked a different prior?
• e.g., the Laplace prior?

31

1

2b

exp(�|x� µ|/b)



Regularization intuition
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Figure 4.5: A comparison between Gaussian and Laplace priors. The Gaus-
sian prior prefers the values to be near zero, whereas the Laplace prior more
strongly prefers the values to equal zero.

where � is a user-selected parameter that is called the regularization param-
eter. The idea is to penalize weight coefficients that are too large; the larger
the �, the more large weights are penalized. If we solve this equation in a
similar manner as before, we obtain

w⇤
= (X>X+ �I)�1X>y.

This has the nice effect of shifting the squared singular values in ⌃

2
d by �,

removing stability issues with dividing by small singular values, as long as �
is itself large enough.

Similarly, if we choose a Laplace distribution, we get an `1 penalized loss

E(w) = (Xw � y)>(Xw � y) + �kwk1.

As with the `2 regularizer for ridge regression, this regularizer penalized large
values in w. However, it also produces more sparse solutions, where entries
in w are zero. This has the effect of feature selection, because zeroing entries
in w is equivalent to removing the corresponding feature.

4.5.3 Handling big data sets

One common approach to handling big datasets is to use stochastic approx-
imation, where samples are processed incrementally. To see how this would
be done, let us revisit the gradient of the error function, rE(w). We ob-
tained a closed form solution for rE(w) = 0; however, for many other error
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Regularization intuition
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l1 regularization
• Feature selection, as well as preventing large weight

• How do we solve this optimization?
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=
1   0  1   0  0  0  1
1   0  1   0  0  0  1
1   0  1   0  0  0  1

t
1 
0 
1 
0 
0 
0 
1

�
k = 7

=
1 
1 
1

k = 3

min
w2Rd

kXw � yk22 + �kwk1



How do we solve with l1 
regularizer?

• Is there a closed form solution?

• What approaches can we take?
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min
w2Rd

kXw � yk22 + �kwk1



Practically solving optimization

• In general, what are the advantages and disadvantages of the 
closed form linear regression solution?

+ Simple approach: no need to add additional requirements, like 
stopping rules

- Is not usually possible

- Must compute an expensive inverse

- With a large number of features, inverting large matrix

? What about a large number of samples?
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