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“I1t's a non-linear pattern with
ovtliers..... but for some reason
I'm very happy with the data.”



Reminders

 Thought questions should be submitted on eclass

e Please list the section related to the thought question

- |f it is a more general, open-ended question not exactly related to a
section, label the question with a topic (e.g., Picking models)



Properties of distributions

e Mean is the expected value (E[X])
e Mode is the most likely value (i.e., x with largest p(x))

e Median m is the value such that X is equally likely to fall above
orbelowm: P(X=m)=P(X=m)

- When we use a squared-error cost, obtain f(x) = E[Y | X]

» If we use an absolute-error cost, obtain f(x) = median (p (y | x) )



Summary of optimal models

Expected cost introduced to formalize our objective

Bayes risk function indicates best we could do

 f(x) specified for each x, rather than having some simpler
(continuous) function class

« can think of it as a table of values
For classification (with uniform cost)

ff(x) =argmax {p(y|x)}.
yey

For regression (with squared-error cost)

1 (x) = /y yp(ylx)dy



earning functions
e Hypothesize a functional form, e.q.
d
flx) =) wja
j=1
flx1,22) = wo + wiz1 + waxs

f($1, 1’2) — WI1X2

e Then need to find the “best” parameters for this function; we
will find the parameters that best approximate E[y | X]



Exercise: Reducible error

d
Can f(x) = ijxj always represent E[Y | x]?
j=1

No. Imaginey = wxixo

This is deterministic, so there is enough information in x to
predict y

* l.e., the stochasticity is not the problem, have zero irreducible error

Rather simplistic functional form means we cannot predict y



Linear versus polynomial function




Linear Regression

©.9 y 1t f(w):wO—leaj‘
X i = size of house | ° fa
V_I = cost of house (2, y2>? .

Figure 4.1: An example of a linear regression fitting on data set D =

{(1,1.2),(2,2.3),(3,2.3),(4,3.3)}. The task of the optimization process is

to find the best linear function f(x) = wg + wix so that the sum of squared
errors €3 + e5 + e3 + e4 is minimized.



(Multiple) Linear Regression

e.g.,
x_{i1} = size of house

X_{I2} = age of house
y_I = cost of house

¥

HObservation v,

—Response Plane
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Linear regression importance

e Many other techniques will use linear weighting of features

» including neural networks

e Often, we will add non-linearity using
* non-linear transformations of linear weighting

* non-linear transformations of features

e Becoming comfortable will linear weightings, for multiple
Inputs and outputs, is important



Example: regression

Example 11: Consider again dataset D = {(1,1.2),(2,2.3),(3,2.3), (4,3.3)}
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Matrix multiplication
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Whiteboard

Maximum likelihood formulation (and assumptions)
Solving the optimization

Weighted error functions, if certain data points “matter” more
than others

Predicting multiple outputs (multivariate y)
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Comments (Sep 26, 2017)

e Assignment 1 due on Thursday

e More review of linear algebra today

WHY 1S THART WOMAN SCOWLNG
AT MEZ DO T KNow HER?

If she loves you more each and every day,
by linear regression she hated you before you met.



M=UXV'
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SVD

Mx =UXV 'x=UX(V'x)
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What we’ve done so far

Discussed linear regression

 goal: obtain weights w such that < x, w> approximates E[Y | X]

Discussed maximum likelihood formulation
Solution: w* = (X'X)"'X'y y = Xw

Starting discussing the properties of the solution
« When is it stable?

- Today: What does this mean for accuracy in predicting on new data?
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Example: OLS

Example 11: Consider again dataset D = {(1,1.2),(2,2.3),(3,2.3), (4,3.3)}

"1 1 1.2
o 1 2 o wo o 2.3
=11 3 ’W_{wl}’y_ 2.3 |
1 4 3.3
In Matlab, can compute I 1
11 1 1 2
T T _
1. XTX X'X=|1 2341 ;
2. (XTX)! 14

3. (XTX)" X Ty

What if we did not add the column of 1s?



18

Whiteboard

More about inverses of matrices
Refresh about stability of the solution
Using regularization to fix the problem

Properties of solution:

 Bias (and underfitting)

 Variance (and overfitting)
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Overfitting
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Figure 4.4: Example of a linear vs. polynomaal fit on a data set shown n
Figure 4.1. The linear fit, f1(x), is shown as a solid green line, whereas the
cubic polynomial fit, f3(x), is shown as a solid blue line. The dotted red line
indicates the target linear concept.

w’ = (0.7,0.63)
(—3.1,6.6, —2.65,0.35)

k
W3
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Comments (Sep 28, 2017)

e Assignment 1 due today
e Need matplotlib for simulate.py

e Today: finish-off bias-variance
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Terminology clarification

e What is a parameter? Any coefficients (i.e., scalars, vectors or
matrices) that define the function you care about

e e.g., a and b are both parameters for function f

(a ifx <O
fla) = b ifx>0

\

e Maximum likelihood solution: parameters for the pmf or pdf
that make the data the most likely

» The following function is not the maximum likelihood solution

f(z) = argmax p(y|x)



Linear regression for
non-linear problems

e.g. f(x)=wo+wizx, — f(x ijxj

e.g. f(x1,22) = wo + w121 + Waxs + wWsT122 + w4a;'1 T w5x3
X P
1 [ o do(z1) | - | Pp(21)
n [ Zm so@) | da@n)

Figure 4.3: Transformation of an n x 1 data matrix X into an n X (p + 1)
matriz ® using a set of basis functions ¢;, 3 =0,1,...,p .

1
i w* — (<I>T<I>) &'y,



Polynomial representations
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Whiteboard

e Bias and variance of linear regression solutions
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Bias-variance trade-off

Low Variance High Variance

-

Optimum Model Complexity

Total Error

Variance

Bias

Model Complexity

*Nice images from: http://scott.fortmann-roe.com/docs/BiasVariance.html



http://scott.fortmann-roe.com/docs/BiasVariance.html

20

Example: regularization and bias

 Picked a Gaussian prior and obtained I2 regularization

e We discussed the bias of this regularization

* no regularization was unbiased E[w] = true w

 with regularization meant E[w] was not equal to the true w

* Previously, however, mentioned that MAP and ML converge to

the same estimate

e Does that happen here?

wh=(X'X

A X 'y
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How do we pick lambda®

Discussed goal to minimize bias-variance trade-oft

* i.e., minimizing MSE
But, this involves knowing the true w!

Recall our actual goal: learn w to get good prediction accuracy
on new data

- Called generalization error

Alternative to directly minimize MSE: use data to determine
which choice of lambda provides good prediction accuracy



How can we tell if its a good
model?

e What if you train many different models on a batch of data,
check their accuracy on that data, and pick the best one?

» Imagine your are predicting how much energy your appliances will use
today

 You train your models on all previous data for energy use in your home

- How well will this perform in the real world?

e What if the models you are testing are only different in terms of
the regularization parameter lambda that they use? What will

you find?
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Simulating generalization error

labeled data set

training set test set

- ~N Iearned model

odor = e (400.0)
odor = p (192.0)
odor = p (2160.0)
odor = e (400.0)

u odor = p (36.0)
odor = n

spore-print-color : e (48.0)
spore-print-color : e (48.0)
spore-print-color = e (1296.0)
spore-print-color e (1344.0)
spore-print-color e (48.0)

m spore-print-color : p (72.0)
spore-print-color : e (0.0)
spore-print-color = w

gill-size = b: e (528.0)
gill-size = n
gill-spacing = c: p (32.0)

gill-spacing = d: e (0.0)
gill-spacing = w
population = a: e (0.0)
population = c: p (16.0)
population = n: e (0.0)
population = s: e (0.0)
population = v: e (48.0)
population = y: e (0.0)
spore-print-color = y: e (48.0)
odor = P (256.0)
odor = p (576.0)

odor = y: p (576.0)

accuracy estimate
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Simulating generalization error

e Now we have one model, trained similarly to how it will be
trained, and a measure of accuracy on new data (but
distributed identically to trained data)

e What if we pick the model with the best test accuracy? Any
iIssues?
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Picking other priors

e Picked Gaussian prior on weights

* Encodes that we want the weights to stay near zero, varying with at
most 1/lambda

e What if we had picked a different prior?

* e.g., the Laplace prior?

1

9 exp(—|r — p|/b)
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Regularization intuition

06 -

——aplace(0,1)
e Mormal(0,1)

0.5

Figure 4.5: A comparison between Gaussian and Laplace priors. The Gaus-
sian prior prefers the values to be near zero, whereas the Laplace prior more
strongly prefers the values to equal zero.
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.. Regularization intuition

AN
<
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W

(a) (b)

Fig. 2. Estimation picture for (a) the lasso and (b) ridge regression

'O ¢+ +

P =00 0<p<l p=>0




11 regularization

e Feature selection, as well as preventing large weight

1 01000 1 1
¢ _ [T o1o0001] _
1 01000 1

K=7

- O OO+ 0O —

e How do we solve this optimization?

min [|[Xw —y/||5 + Al|w|];
wERT

34
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How do we solve with |1
regularizer?

min [ Xw —yll5 + A[w|

wERd

e |s there a closed form solution?

e What approaches can we take?



36

Practically solving optimization

e |n general, what are the advantages and disadvantages of the
closed form linear regression solution?

+ Simple approach: no need to add additional requirements, like
stopping rules

- Is not usually possible
- Must compute an expensive inverse
- With a large number of features, inverting large matrix

? What about a large number of samples?



