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Formalizing the problem

• Specify random variables we care about, e.g., Commute Time 

• We might then pick a particular distribution over these random 
variables
• Say we think our variable is Gaussian

• Now want a way to use data to inform models
• Let data tell us the parameters for that Gaussian

• Note: I do not expect you to be an expert in all the PMFs and 
PDFs discussed, nor memorize their formulas
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Parameter estimation
• Assume that we are given some model class, M, 

• e.g., Gaussian with parameters mu and sigma

• selection of model from the class corresponds to selecting mu, sigma

• Now want to select “best” model; how do we define best?
• Generally assume data comes from that model class; might want to 

find model that best explains the data (or most likely given the data)

• Might want most likely model, with preference for “important” samples

• Might want most likely model, that also matches expert prior info

• Might want most likely model, that is the simplest (least parameters)

• These additional requirements are usually in place to enable 
better generalization to unseen data
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Some notation
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nX

i=1

x

i

= x1 + x2 + . . .+ x

n

nY

i=1

x

i

= x1x2 . . . xn

f : X ! R
x

⇤
= argmax

x

f(x)

f(x

⇤
) = max

x

f(x)

M set of models ,M 2 M
e.g., M = {(µ,�) : µ 2 R,� > 0}

c : Rd ! R
w⇤

= arg max

w2Rd
c(w)

c(w⇤
) = max

w2Rd
c(w)

F is a set of models

e.g., F = {N (µ,�) | (µ,�) 2 R2,� > 0}
e.g., F = {w 2 Rd | f(x) = x

>
w}



Definition of optimization
• We select some (error) function c we care about

• Maximizing c means we are finding largest point

• Minimizing c means we are finding smallest point
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Maximum a posteriori (MAP) 
estimation
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• Want the f that is most likely, given the data

• p(f | D) is the posterior distribution of the model given data
• e.g., F could be the space of Gaussian distributions, the model is f 

and f(x) returns probability/density of a point x

• e.g., we could assume x is Gaussian distributed with variance = 1, 
and so F could be the reals, and the model f is the mean

Question: What is the function we are optimizing and 
what are the parameters we are learning?

fMAP = argmax

f2F
p(f |D)



MAP
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• p(f | D) is the posterior distribution of the model given data
• e.g., we could assume x is Gaussian distributed with variance = 1, 

and so F could be the reals, and the model f is the mean

Question: What is the function we are optimizing and 
what are the parameters we are learning?

fMAP = argmax

f2F
p(f |D)

c(f) = p(mean is f |D)

max

f2R
c(f)



Maximum a posteriori (MAP)
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• p(f | D) is the posterior distribution of the model given data

• In discrete spaces: p(f | D) is the PMF
• the MAP estimate is exactly the most probable model

• e.g., bias of coin is 0.1, 0.5, or 0.7, p(f = 0.1 | D), …

• In continuous spaces: p(f | D) is the PDF
• the MAP estimate is the model with the largest value of the posterior 

density function 

• e.g., bias of a coin is in [0, 1]

• But what is p(f | D)? Do we pick it? If so, how?

fMAP = argmax

f2F
p(f |D)



MAP calculation
• Start by applying Bayes rule

• p(D | f) is the likelihood of the data, under the model

• p(f) is the prior of the model

• p(D) is the marginal distribution of the data
• we will often be able to ignore this term
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p(f |D) =
p(D|f)p(f)

p(D)



Why is this conversion important?
• Do not always have a known form for p(f | D)

• We usually have chosen (known) forms for p(D | f) and p(f)

• Let theta = parameters of model (distribution); interchangeable 
use p(D | f) = p(D | theta) and p(f) = p(theta)

• Example: Let D = {x1} (one sample). Then one common 
choice is a Gaussian over x1: p(D | f) = p(x1 | mu, sigma)
• p(f | D) is not obvious, since specified our model class for P(D | f)

• What is p(f) in this case? We may put some prior “preferences” on mu 
and sigma, e.g., normal distribution around mu, specifying that really 
large magnitude values in mu are unlikely

• Specifying and using p(f) is related to regularization and Bayesian 
parameter estimation, which will will discuss more later10
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How do we compute p(D)?

• If we have p(D, f), can we obtain p(D)?
• Marginalization

• If we have p(D|f) and p(f), do we have p(D, f)? 
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Data marginal

• Using the formula of total probability

• Fully expressible in terms of likelihood and prior
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Optimization
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Model inference : Observations + + Optimization
Knowledge

and
Assumptions

Figure 2.1: Statistical framework for model inference. The estimates of the parameters are
made using a set of observations D as well as experience in the form of model space F , prior
distribution p(f), or specific starting solutions in the optimization step.

where p(f |D) is called the posterior distribution of the model given the data. In discrete
model spaces, p(f |D) is the probability mass function and the MAP estimate is exactly the
most probable model. Its counterpart in continuous spaces is the model with the largest
value of the posterior density function. Note that we use words model, which is a function,
and its parameters, which are the coefficients of that function, somewhat interchangeably.
However, we should keep in mind the difference, even if only for pedantic reasons.

To calculate the posterior distribution we start by applying the Bayes rule as

p(f |D) =

p(D|f) · p(f)
p(D)

, (2.1)

where p(D|f) is called the likelihood function, p(f) is the prior distribution of the model,
and p(D) is the marginal distribution of the data. Notice that we use D for the observed data
set, but that we usually think of it as a realization of a multidimensional random variable
D drawn according to some distribution p(D). Using the formula of total probability, we
can express p(D) as

p(D) =

8

>

<

>

:

P

f2F p(D|f)p(f) f : discrete

´
F p(D|f)p(f)df f : continuous

Therefore, the posterior distribution can be fully described using the likelihood and the
prior. The field of research and practice involving ways to determine this distribution and
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Optimization to get model
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Will often write:

✓MAP = argmax

✓

P (D|✓)p(✓)
p(D)

=

1

p(D)

argmax

✓
P (D|✓)p(✓)

= argmax

✓
P (D|✓)p(✓)

p(✓|D) =
P (D|✓)p(✓)

p(D)

/ P (D|✓)p(✓)



Maximum likelihood

• In some situations, may not have a reason to prefer one 
model over another (i.e., no prior knowledge or preferences)

• Can loosely think of maximum likelihood as instance of MAP, 
with uniform prior p(theta) = u  for some constant u
• If domain is infinite (example, the                                                               

set of reals), the uniform distribution                                                    
is not defined! 

• but the interpretation is still similar

• in practice, typically have a bounded                                                    
space in mind for the model class
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✓ML = argmax

✓
P (D|✓)

p(x)



ML example
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x1

e.g., F = R, ✓ is the mean of a Gaussian, fixed � = 1

c(✓) = p(D|✓)
= N (x1|µ = ✓,�

2
= 1)

=

1

2⇡

exp

✓
�1

2

(x1 � ✓)

2

◆

✓

c(✓) = p(D|✓)



Maximizing the log-likelihood

• We want to maximize the likelihood, but often instead 
maximize the log-likelihood

• Why? Or maybe first, is this equivalent?
• The Why is that it makes the optimization much simpler, when we 

have more than one sample
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argmax

✓2F
p(D|✓) = argmax

✓2F
log p(D|✓)



Why can we shift by log?
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Maximizing the log-likelihood
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This conversion is even more important 
when we have more than one sample
• Example: Let D = {x1,x2} (two samples).

• If x1 and x2 are independent samples from same distribution 
(same model), then P(x1, x2 | theta) = P(x1 | f) P(x2 | theta) 
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This conversion is even more important 
when we have more than one sample
• Example: Let D = {x1,x2} (two samples).

• If x1 and x2 are independent samples from same distribution 
(same model), p(x1, x2 | theta) = p(x1 | theta) p(x2 | theta) 
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With n samples

• For many iid samples x1, …, xn, we could choose (e.g.,) a 
Gaussian distribution for P(xi | theta), with theta = {mu,sigma}
• iid = independent and identically distributed

• P(x1, …, xn | theta) = P(x1 | theta) … P(xn | theta) 
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How do we solve this 
maximization problem?

• Naive strategy: 

• 1. Guess 100 solutions theta

• 2. Pick the one with the largest value

• Can we do something better?
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Crash course in optimization

• Goal: find maximal (or minimal) points of functions

• Generally assume functions are smooth, use gradient descent

• Derivative: direction of ascent from a scalar point

• Gradient: direction of ascent from a vector point
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Function surface
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Local Minima

Global Minima

Saddlepoint



Single-variate calculus
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GIF from Wikipedia: Tangent

For a function f defined

on a scalar x, the derivative is

df

dx

(x) = lim

h!0

f(x+ h)� f(x)

h

At any point, x,

df

dx

(x) gives

the slope of the tangent

to the function at f(x)

*Note: f is c in this slide



Why don’t constants matter?
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max

x

f(x)

d

dx

f(x) = 0

max

x

cf(x), c > 0

d

dx

cf(x) = c

d

dx

f(x) = 0

Both have derivative zero under same condition

regardless of c > 0
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Can either minimize or 
maximize
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argmin

✓
f(✓) = argmax

✓
�f(✓)c c

Algorithm 1: Line Search(wt, c, g = Òc(wt))
1: Optimization parameters: ÷

max

= 1.0, · = 0.7, tolerance Ω 10e≠4

2: ÷ Ω ÷
max

3: w Ω wt

4: obj Ω c(w)
5: while number of backtracking iterations is less than maximum iterations do
6: w Ω wt ≠ ÷g
7: // Ensure improvement is at least as much as tolerance
8: If c(w) < obj - tolerance then break
9: // Else, the objective is worse and so we decrease stepsize

10: ÷ Ω ·÷
11: obj Ω c(w)
12: if maximum number of iterations reached then
13: // Could not improve solution
14: return wt, ÷ = 0
15: return w, ÷

2.4 Optimization properties
There are several optimization properties to keep in mind when reading this handbook,
which we highlight here.

Maximizing versus minimizing We have so far discussed the goal of minimizing an
objective; an equivalent alternative is to maximize the negative of this objective.

argmin
wœRd

c(w) = argmax
wœRd

≠c(w)

where argmin returns w that produces the minimum value of c(w) and argmax returns
w that produces the maximum value of ≠c(w). The actual min and max values are not
the same, since for a given optimal solution, c(w) ”= ≠c(w). We opt to formulate each of
our optimizations as a minimization, and do gradient descent. It would be equally valid,
however, to formulate the optimizations as maximizations, and do gradient ascent.

Convexity A function c : Rd æ R is said to be convex if for any w
1

, w
2

œ Rd and
t œ [0, 1],

c(tw
1

+ (1 ≠ t)w
2

) Æ tc(w
1

) + (1 ≠ t)c(w
2

) (2.4)

This definition means that when we draw a line between any two points on the function
surface, the function values between these two points all lie below this line. Convexity is
an important property, because it means that every stationary point is a global minimum.
Therefore, regardless of where we start our gradient descent, with appropriately chosen
stepsize and su�cient iterations, we will reach an optimal solution.

A corresponding definition is a concave function, which is precisely the opposite: all
points lie above the line. For any convex function c, the negative of that function ≠c is a
concave function.
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Reminders and Questions

• Cov[X,X] = V[X], and we also wrote Cov[X] in the assignment

• Datasets for mini-project
• UCI repository

• Kaggle competitions

• Energy datasets (from Prof Omid) 

• Today going to go through several examples of ML and MAP
• These will also be like probability exercises
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General format for thought 
questions

• (1) First show/explain how you understand a concept

• (2) Given this context, propose a follow-up question

• (3) [Optional] Propose an answer to the question, or how you 
might find it

• Additional note: framing a coherent, concise thought is a skill. 
When writing your thought question, ask yourself: is this clear?

• Introductory slides have some examples; a few more listed here

30



Examples of “good”         
thought questions

• After reading about independence, I wonder how one could check 
in practice if two variables are independent, given a database of 
samples? Is this even possible? One possible strategy could be to 
approximate their conditional distributions, and examine the effects 
of changing a variable. But it seems like there could be other more 
direct or efficient strategies.

31



Examples of “good”         
thought questions

• “After reading about the definition of expectation and variance, I 
wonder about a practical real-life problem—when facing with a 
precious data set with numerous of missing values, how to deal 
those missing values without causing a huge deviation of 
expectation and variance of the original data set? One possible 
scheme is to replace these missing values with expectation (or 
mean), but it raises up another problem—replacing all the missing 
values with mean may reduce the variance, causing a huge 
deviation on the variance of the original dataset.”
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Examples of “bad”            
thought questions

• I don’t understand random variables. Could you explain it again? 
(i.e. a request for me to explain something, without any insight)

• Derive the maximum likelihood approach for a Gaussian. (i.e., an 
exercise question from a textbook)

• What is the difference between a probability mass function and a 
probability density function? (i.e., a question that could easily be 
answered from reading the definitions in the notes)
• But the following modification would be good: “I can see that pmfs and pdfs 

are different, in that the first is for discrete RVs and the second for 
continuous. Is there a large difference in which one we choose to model 
our data? Is it sometimes beneficial to discretize continuous variables and 
use pmfs instead?”
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Example of thought questions

• “Bad” thought question: I still do not understand what a 
model is. Are they distributions? Can they be other things?

• Alternative: The notion of a model appears to be somewhat 
imprecise. We have used distributions as a model of our data, 
with parameters to those distributions representing the model. 
But, can other thing be models? For example, is plotting the 
data points and understanding its behavior considered a 
“model” of the data? What other kinds of models are there?
• First showed that understood how we have been describing models

• Then showed follow-up thought about what the term “model” could 
really mean
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Why this focus on            
thought questions?

• Whether academia or industry, specifying projects involves 
understanding what exists, and proposing the “next” thing

• This includes identifying
• current assumptions/beliefs that could be challenged

• gaps in current approaches (practical/theoretical)

• limitations, so can keep those limitations in mind for the solution

• novel ways forward, given the current solutions/understanding
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Clarifications on multivariate Gaussian
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Example: maximum likelihood 
for discrete distributions

• Imagine you are flipping a biased coin; the model parameter is 
the bias of the coin, theta

• You get a dataset D = {x_1, …, x_n} of coin flips, where x_i = 
1 if it was heads, and x_i = 0 if it was tails

• What is p(D | theta)?
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Learning the bias of a coin
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Example: maximum likelihood 
for discrete distributions

• How do we estimate theta?

• Counting: 
• count the number of heads Nh

• count the number of tails Nt

• normalize: theta = Nh/ (Nh + Nt)

• What if you actually try to maximize 
the likelihood?
• i.e., solve argmax p(D | theta)
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Example: maximum likelihood 
for discrete distributions

• What if you actually try to maximize 
the likelihood to get theta?
• i.e., solve argmax p(D | theta)
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Example: maximum likelihood 
for discrete distributions

40

p(x|✓) = ✓

x(1� ✓)1�x

log(ab) = log a+ log b

log(ac) = c log a
log f(✓) = log

nY

i=1

p(xi|✓)

=

nX

i=1

log p(xi|✓)

log p(x|✓) = log (✓

x

) + log

�
(1� ✓)

1�x

�

= x log (✓) + (1� x) log (1� ✓)

argmax

✓
f(✓) = argmax

✓
log f(✓)c c

c



Example: maximum likelihood 
for discrete distributions
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Example: maximum likelihood 
for discrete distributions

42

x̄ =
nX

i=1

xi

d

d✓

=
1

✓

x̄� 1

1� ✓

(n� x̄) = 0

=) x̄

✓

=
n� x̄

1� ✓

=) (1� ✓)x̄ = ✓(n� x̄)

=) x̄� ✓x̄ = ✓n� ✓x̄

=) ✓ =
x̄

n



Back to Independence and 
Conditional independence

• What does it mean to say X and Y are independent?
• To say “independent”, you have to have a distribution 

• p_XY(x,y) = p_X(x) p_Y(y), need three three functions

• What is p_{X|Z}(x | z)? 
• It's a Bernoulli

• If we know X is a coin, but don’t know the bias, what is p_X?
• p_X = sum_z p_{X|Z}(x | z) p(z)

• What is p_{XY}(x,y)?
• p_{XY} = sum_z p_{X,Y|Z}(x,y | z) p(z) = sum_z p_{X|Z}(x | z) p_{Y|Z}

(y | z) p(z) not necessarily equal to p_X(x) p_Y(y)
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Example: MAP for discrete 
distributions

• Imagine you are flipping a biased coin; the model parameter is 
the bias of the coin, theta

• You get a dataset D = {x_1, …, x_n} of coin flips, where x_i = 
1 if it was heads, and x_i = 0 if it was tails

• What if we also specify p(theta)?

• What is the MAP estimate?
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Learning the bias of a coin

v

n
=

⇢
1 if on toss n the coin comes up heads
0 if on toss n the coin comes up tails

Our aim is to estimate the probability ✓ that the coin will be a head,
p(v

n
= 1|✓) = ✓ – called the ‘bias’ of the coin.

Building a model
The variables are v

1
, . . . , v

N and ✓ and we require a model of the probabilistic
interaction of the variables, p(v1, . . . , vN , ✓). Assuming there is no dependence
between the observed tosses, except through ✓, we have the belief network

p(v

1
, . . . , v

N
, ✓) = p(✓)

NY

n=1

p(v

n|✓)

✓

v

1
v

2
v

3 · · ·
v

N

(a)

✓

v

n

N

(b)

Figure : (a): Belief network for

coin tossing model. (b): Plate
notation equivalent of (a). A plate

replicates the quantities inside the

plate a number of times as specified

in the plate.

x1 xnx2 x3



Example: MAP for discrete 
distributions
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The prior

We still need to fully specify the prior p(✓). To avoid complexities resulting from
continuous variables, we’ll consider a discrete ✓ with only three possible states,
✓ 2 {0.1, 0.5, 0.8}. Specifically, we assume

p(✓ = 0.1) = 0.15, p(✓ = 0.5) = 0.8, p(✓ = 0.8) = 0.05

✓

0.1 0.5 0.8



Example: MAP for discrete 
distributions

46

Coin posterior

For an experiment with NH = 2, NT = 8, the posterior distribution is

✓

0.1 0.5 0.8

✓

0.1 0.5 0.8

If we were asked to choose a single a posteriori most likely value for ✓, it would be
✓ = 0.5, although our confidence in this is low since the posterior belief that
✓ = 0.1 is also appreciable. This result is intuitive since, even though we observed
more Tails than Heads, our prior belief was that it was more likely the coin is fair.

p(✓|D) = p(D|✓)p(✓)p(✓)



Example: MAP for discrete 
distributions
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The coin posterior

Repeating the above with NH = 20, NT = 80, the posterior changes to

✓

0.1 0.5 0.8

✓

0.1 0.5 0.8

so that the posterior belief in ✓ = 0.1 dominates. There are so many more tails
than heads that this is unlikely to occur from a fair coin. Even though we a priori

thought that the coin was fair, a posteriori we have enough evidence to change our
minds.

The posterior e↵ect
Note that in both examples, NT /NH = 4, although in the latter we are much more
confident that ✓ = 0.1



Now on to some careful 
examples of MAP!

• Whiteboard for Examples 8, 9, 10, 11

• More fun with derivatives and finding 
the minimum of a function

• Next class: 
• finish off parameter estimation

• introduction to prediction problems for ML
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