Parameter estimation Conditional risk

The annual death rate Among people WHO KNOW THAT STATISTIC IS ONE IN SIX.

Formalizing the problem

- Specify random variables we care about, e.g., Commute Time
- We might then pick a particular distribution over these random variables
- Say we think our variable is Gaussian
- Now want a way to use data to inform models
- Let data tell us the parameters for that Gaussian
- Note: I do not expect you to be an expert in all the PMFs and PDFs discussed, nor memorize their formulas

Parameter estimation

- Assume that we are given some model class, M,
- e.g., Gaussian with parameters mu and sigma
- selection of model from the class corresponds to selecting mu, sigma
- Now want to select "best" model; how do we define best?
- Generally assume data comes from that model class; might want to find model that best explains the data (or most likely given the data)
- Might want most likely model, with preference for "important" samples
- Might want most likely model, that also matches expert prior info
- Might want most likely model, that is the simplest (least parameters)
- These additional requirements are usually in place to enable better generalization to unseen data

Some notation

$$
\begin{aligned}
& \sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\ldots+x_{n} \\
& \prod_{i=1}^{n} x_{i}=x_{1} x_{2} \ldots x_{n} \\
& c: \mathbb{R}^{d} \rightarrow \mathbb{R} \\
& \mathbf{w}^{*}=\arg \max _{\mathbf{w} \in \mathbb{R}^{d}} c(\mathbf{w}) \\
& c\left(\mathbf{w}^{*}\right)=\max _{\mathbf{w} \in \mathbb{R}^{d}} c(\mathbf{w}) \\
& \mathcal{F} \text { is a set of models } \\
& \text { e.g., } \mathcal{F}=\left\{\mathcal{N}(\mu, \sigma) \mid(\mu, \sigma) \in \mathbb{R}^{2}, \sigma>0\right\} \\
& \text { e.g., } \mathcal{F}=\left\{\mathbf{w} \in \mathbb{R}^{d} \mid f(\mathbf{x})=\mathbf{x}^{\top} \mathbf{w}\right\}
\end{aligned}
$$

Definition of optimization

- We select some (error) function c we care about

- Maximizing c means we are finding largest point
- Minimizing c means we are finding smallest point

Maximum a posteriori (MAP) estimation

$$
f_{\mathrm{MAP}}=\arg \max _{f \in \mathcal{F}} p(f \mid \mathcal{D})
$$

- Want the f that is most likely, given the data
- $p(f \mid D)$ is the posterior distribution of the model given data
- e.g., F could be the space of Gaussian distributions, the model is f and $f(x)$ returns probability/density of a point x
- e.g., we could assume x is Gaussian distributed with variance $=1$, and so F could be the reals, and the model f is the mean

Question: What is the function we are optimizing and what are the parameters we are learning?

MAP

$$
f_{\mathrm{MAP}}=\arg \max _{f \in \mathcal{F}} p(f \mid \mathcal{D})
$$

- $p(f \mid D)$ is the posterior distribution of the model given data
- e.g., we could assume x is Gaussian distributed with variance $=1$, and so F could be the reals, and the model f is the mean

Question: What is the function we are optimizing and what are the parameters we are learning?

$$
\begin{aligned}
& c(f)=p(\text { mean is } f \mid \mathcal{D}) \\
& \max _{f \in \mathbb{R}} c(f)
\end{aligned}
$$

Maximum a posteriori (MAP)

$$
f_{\mathrm{MAP}}=\arg \max _{f \in \mathcal{F}} p(f \mid \mathcal{D})
$$

- $p(f I D)$ is the posterior distribution of the model given data
- In discrete spaces: $p(f \mid D)$ is the PMF
- the MAP estimate is exactly the most probable model
- e.g., bias of coin is $0.1,0.5$, or $0.7, p(f=0.1$ I $D), \ldots$
- In continuous spaces: $p(f$ I D) is the PDF
- the MAP estimate is the model with the largest value of the posterior density function
- e.g., bias of a coin is in $[0,1]$
- But what is $p(f \mid D)$? Do we pick it? If so, how?

MAP calculation

- Start by applying Bayes rule

$$
p(f \mid \mathcal{D})=\frac{p(\mathcal{D} \mid f) p(f)}{p(\mathcal{D})}
$$

- $p(D \mid f)$ is the likelihood of the data, under the model
- $p(f)$ is the prior of the model
- $p(D)$ is the marginal distribution of the data
- we will often be able to ignore this term

Why is this conversion important?

- Do not always have a known form for $p(f$ I D)
- We usually have chosen (known) forms for $p(D$ I $f)$ and $p(f)$
- Let theta = parameters of model (distribution); interchangeable use $p(D \mid f)=p(D \mid$ theta) and $p(f)=p($ theta $)$
- Example: Let $\mathrm{D}=\{\mathrm{x} 1\}$ (one sample). Then one common choice is a Gaussian over $x 1: p(D \mid f)=p(x 1 \mid m u$, sigma)
- $p(f \mid D)$ is not obvious, since specified our model class for $P(D \mid f)$
- What is $p(f)$ in this case? We may put some prior "preferences" on mu and sigma, e.g., normal distribution around mu, specifying that really large magnitude values in mu are unlikely
- Specifying and using $p(f)$ is related to regularization and Bayesian parameter estimation, which will will discuss more later

Why is this conversion important?

- Do not always have a known form for $p(f$ I D)
- We usually have chosen (known) forms for $p(D$ I $f)$ and $p(f)$
- Let theta = parameters of model (distribution); interchangeable use $p(D \mid f)=p(D \mid$ theta) and $p(f)=p($ theta $)$
- Example: Let $\mathrm{D}=\{\mathrm{x} 1\}$ (one sample). Then one common choice is a Gaussian over $x 1: p(D \mid f)=p(x 1 \mid m u$, sigma)
- $p(f \mid D)$ is not obvious, since specified our model class for $P(D \mid f)$
- What is $p(f)$ in this case? We may put some prior "preferences" on mu and sigma, e.g., normal distribution around mu, specifying that really large magnitude values in mu are unlikely
- Specifying and using $p(f)$ is related to regularization and Bayesian parameter estimation, which will will discuss more later

How do we compute $p(D)$?

- If we have $p(D, f)$, can we obtain $p(D)$?
- Marginalization

$$
\begin{gathered}
p_{X_{i}}\left(x_{i}\right)=\sum_{x_{1}} \cdots \sum_{x_{i-1}} \sum_{x_{i+1}} \cdots \sum_{x_{k}} p_{\boldsymbol{X}}\left(x_{1}, \ldots, x_{k}\right) \\
p_{X_{i}}\left(x_{i}\right)=\int_{x_{1}} \cdots \int_{x_{i-1}} \int_{x_{i+1}} \cdots \int_{x_{k}} p_{\boldsymbol{X}}(\boldsymbol{x}) d x_{1} \cdots d x_{i-1} d x_{i+1} \cdots d x_{k}
\end{gathered}
$$

- If we have $p(\mathrm{DIf})$ and $p(f)$, do we have $p(\mathrm{D}, \mathrm{f})$?

Data marginal

- Using the formula of total probability

$$
p(\mathcal{D})= \begin{cases}\sum_{f \in \mathcal{F}} p(\mathcal{D} \mid f) p(f) & f: \text { discrete } \\ \int_{\mathcal{F}} p(\mathcal{D} \mid f) p(f) d f & f: \text { continuous }\end{cases}
$$

- Fully expressible in terms of likelihood and prior

Optimization to get model

$$
\begin{aligned}
\theta_{\mathrm{MAP}} & =\arg \max _{\theta} \frac{P(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})} \\
& =\frac{1}{p(\mathcal{D})} \arg \max _{\theta} P(\mathcal{D} \mid \theta) p(\theta) \\
& =\arg \max _{\theta} P(\mathcal{D} \mid \theta) p(\theta)
\end{aligned}
$$

Will often write:

$$
\begin{aligned}
p(\theta \mid \mathcal{D}) & =\frac{P(\mathcal{D} \mid \theta) p(\theta)}{p(\mathcal{D})} \\
& \propto P(\mathcal{D} \mid \theta) p(\theta)
\end{aligned}
$$

Maximum likelihood

$$
\theta_{\mathrm{ML}}=\arg \max _{\theta} P(\mathcal{D} \mid \theta)
$$

- In some situations, may not have a reason to prefer one model over another (i.e., no prior knowledge or preferences)
- Can loosely think of maximum likelihood as instance of MAP, with uniform prior p (theta) $=u$ for some constant u
- If domain is infinite (example, the $p(x)$ set of reals), the uniform distribution is not defined!
- but the interpretation is still similar $\frac{1}{b-a}$
- in practice, typically have a bounded space in mind for the model class

ML example

e.g., $\mathcal{F}=\mathbb{R}, \theta$ is the mean of a Gaussian, fixed $\sigma=1$

$$
\begin{aligned}
c(\theta) & =p(\mathcal{D} \mid \theta) \\
& =\mathcal{N}\left(x_{1} \mid \mu=\theta, \sigma^{2}=1\right) \\
& =\frac{1}{2 \pi} \exp \left(-\frac{1}{2}\left(x_{1}-\theta\right)^{2}\right)
\end{aligned}
$$

$c(\theta)=p(\mathcal{D} \mid \theta)$

Maximizing the log-likelihood

- We want to maximize the likelihood, but often instead maximize the log-likelihood

$$
\arg \max _{\theta \in \mathcal{F}} p(\mathcal{D} \mid \theta)=\arg \max _{\theta \in \mathcal{F}} \log p(\mathcal{D} \mid \theta)
$$

- Why? Or maybe first, is this equivalent?
- The Why is that it makes the optimization much simpler, when we have more than one sample

Why can we shift by log? $c\left(\theta_{1}\right)>c\left(\theta_{2}\right) \Longleftrightarrow \log c\left(\theta_{1}\right)>\log c\left(\theta_{2}\right)$

Monotone increasing

Likelihood values always > 0

Maximizing the log-likelihood

e.g., $\mathcal{F}=\mathbb{R}, \theta$ is the mean of a Gaussian, fixed $\sigma=1$
$\log (a b)=\log a+\log b$

$$
c(\theta)=\log p(\mathcal{D} \mid \theta)
$$ $\log \left(a^{c}\right)=c \log a$

$=\log \left(\frac{1}{2 \pi} \exp \left(-\frac{1}{2}\left(x_{1}-\theta\right)^{2}\right)\right)$
$=-\log (2 \pi)-\frac{1}{2}\left(x_{1}-\theta\right)^{2}$
$c(\theta)=\log p(\mathcal{D} \mid \theta)$

This conversion is even more important when we have more than one sample

- Example: Let $\mathrm{D}=\{\mathrm{x} 1, \mathrm{x} 2\}$ (two samples).
- If $x 1$ and $x 2$ are independent samples from same distribution (same model), then $P(x 1, x 2 \mid$ theta $)=P(x 1 \mid f) P(x 2 \mid$ theta $)$

$$
\begin{aligned}
& p\left(x_{1} \mid \theta\right) p\left(x_{2} \mid \theta\right)=\frac{1}{2 \pi} \exp \left(-\frac{1}{2}\left(x_{1}-\theta\right)^{2}\right) \times \frac{1}{2 \pi} \exp \left(-\frac{1}{2}\left(x_{2}-\theta\right)^{2}\right) \\
& \begin{aligned}
\log \left(p\left(x_{1} \mid \theta\right) p\left(x_{2} \mid \theta\right)\right) & =\log p\left(x_{1} \mid \theta\right)+\log p\left(x_{2} \mid \theta\right) \\
& =-2 \log (2 \pi)-\frac{1}{2}\left(x_{1}-\theta\right)^{2}-\frac{1}{2}\left(x_{2}-\theta\right)^{2}
\end{aligned}
\end{aligned}
$$

This conversion is even more important when we have more than one sample

- Example: Let $\mathrm{D}=\{\mathrm{x} 1, \mathrm{x} 2\}$ (two samples).
- If $x 1$ and $x 2$ are independent samples from same distribution (same model), $p(x 1, x 2 \mid$ theta $)=p(x 1 \mid$ theta) $p(x 2 \mid$ theta $)$

With n samples

- For many iid samples x1, ..., xn, we could choose (e.g.,) a Gaussian distribution for $P(x i l$ theta $)$, with theta $=\{\mathrm{mu}$, sigma $\}$
- iid = independent and identically distributed
- $P(x 1, \ldots, x n \mid$ theta $)=P(x 1 \mid$ theta $) \ldots P(x n \mid$ theta $)$

How do we solve this maximization problem?

- Naive strategy:
- 1. Guess 100 solutions theta
- 2. Pick the one with the largest value
- Can we do something better?

Crash course in optimization

- Goal: find maximal (or minimal) points of functions
- Generally assume functions are smooth, use gradient descent
- Derivative: direction of ascent from a scalar point $\frac{d}{d x} c(x)$
- Gradient: direction of ascent from a vector point $\nabla c(\mathbf{x})$

Function surface

Global Minima

Single-variate calculus

For a function f defined on a scalar x, the derivative is

$$
\frac{d f}{d x}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

At any point, $x, \frac{d f}{d x}(x)$ gives the slope of the tangent to the function at $\mathrm{f}(\mathrm{x})$

GIF from Wikipedia:Tangent

Why don't constants matter?

$$
\begin{aligned}
& \max _{x} c(x) \\
& \frac{d}{d x} c(x)=0 \\
& \max _{x} u c(x), \quad u>0 \\
& \frac{d}{d x} u c(x)=u \frac{d}{d x} c(x)=0 \\
& \text { Both have derivative zero under same condition } \\
& \text { regardless of } u>0
\end{aligned}
$$

Can either minimize or maximize

$$
\arg \min _{\theta} c(\theta)=\arg \max _{\theta}-c(\theta)
$$

Convex $C=x^{*} x+y^{*} y$

Concave $c=-x^{*} x-y^{*} y$

$c\left(t \mathbf{w}_{1}+(1-t) \mathbf{w}_{2}\right) \leq t c\left(\mathbf{w}_{1}\right)+(1-t) c\left(\mathbf{w}_{2}\right)$

Reminders and Questions

- $\operatorname{Cov}[\mathrm{X}, \mathrm{X}]=\mathrm{V}[\mathrm{X}]$, and we also wrote $\operatorname{Cov}[\mathrm{X}]$ in the assignment
- Datasets for mini-project
- UCI repository
- Kaggle competitions
- Energy datasets (from Prof Omid)
- Today going to go through several examples of ML and MAP
- These will also be like probability exercises

General format for thought questions

- (1) First show/explain how you understand a concept
- (2) Given this context, propose a follow-up question
- (3) [Optional] Propose an answer to the question, or how you might find it
- Additional note: framing a coherent, concise thought is a skill. When writing your thought question, ask yourself: is this clear?
- Introductory slides have some examples; a few more listed here

Examples of "good" thought questions

- After reading about independence, I wonder how one could check in practice if two variables are independent, given a database of samples? Is this even possible? One possible strategy could be to approximate their conditional distributions, and examine the effects of changing a variable. But it seems like there could be other more direct or efficient strategies.

Examples of "good" thought questions

- "After reading about the definition of expectation and variance, I wonder about a practical real-life problem-when facing with a precious data set with numerous of missing values, how to deal those missing values without causing a huge deviation of expectation and variance of the original data set? One possible scheme is to replace these missing values with expectation (or mean), but it raises up another problem - replacing all the missing values with mean may reduce the variance, causing a huge deviation on the variance of the original dataset."

Examples of "bad" thought questions

- I don't understand random variables. Could you explain it again? (i.e. a request for me to explain something, without any insight)
- Derive the maximum likelihood approach for a Gaussian. (i.e., an exercise question from a textbook)
- What is the difference between a probability mass function and a probability density function? (i.e., a question that could easily be answered from reading the definitions in the notes)
- But the following modification would be good: "I can see that pmfs and pdfs are different, in that the first is for discrete RVs and the second for continuous. Is there a large difference in which one we choose to model our data? Is it sometimes beneficial to discretize continuous variables and use pmfs instead?"

Example of thought questions

- "Bad" thought question: I still do not understand what a model is. Are they distributions? Can they be other things?
- Alternative: The notion of a model appears to be somewhat imprecise. We have used distributions as a model of our data, with parameters to those distributions representing the model. But, can other thing be models? For example, is plotting the data points and understanding its behavior considered a "model" of the data? What other kinds of models are there?
- First showed that understood how we have been describing models
- Then showed follow-up thought about what the term "model" could really mean

Why this focus on thought questions?

- Whether academia or industry, specifying projects involves understanding what exists, and proposing the "next" thing
- This includes identifying
- current assumptions/beliefs that could be challenged
- gaps in current approaches (practical/theoretical)
- limitations, so can keep those limitations in mind for the solution
- novel ways forward, given the current solutions/understanding

Clarifications on multivariate Gaussian

$$
\begin{gathered}
p(\boldsymbol{\omega})=\frac{1}{\sqrt{(2 \pi)^{k}|\boldsymbol{\Sigma}|}} \exp \left(-\frac{1}{2}(\boldsymbol{\omega}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{\omega}-\boldsymbol{\mu})\right) \\
\boldsymbol{\mu}=\left[\begin{array}{c}
\mu_{1} \\
\mu_{2}
\end{array}\right] \boldsymbol{\Sigma}=\left[\begin{array}{cc}
10 & 0 \\
0 & 2
\end{array}\right] \boldsymbol{\Sigma}^{-1}=\left[\begin{array}{cc}
\frac{1}{10} & 0 \\
0 & \frac{1}{2}
\end{array}\right] \\
\boldsymbol{\omega}-\boldsymbol{\mu}=\left[\begin{array}{c}
\omega_{1}-\mu_{1} \\
\omega_{2}-\mu_{2}
\end{array}\right] \\
{\left[\begin{array}{c}
\frac{1}{10}\left(\omega_{1}-\mu_{1}\right) \\
\frac{1}{2}\left(\omega_{2}-\mu_{2}\right)
\end{array}\right]^{\top}\left[\begin{array}{c}
\omega_{1} \\
\omega_{1}-\mu_{1} \\
\omega_{2}-\mu_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{10} & 0 \\
0 & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{10}\left(\omega_{1}-\mu_{1}\right) \\
\frac{1}{2}\left(\omega_{2}-\mu_{2}\right)
\end{array}\right]}
\end{gathered}
$$

Example: maximum likelihood for discrete distributions

- Imagine you are flipping a biased coin; the model parameter is the bias of the coin, theta
- You get a dataset $\mathrm{D}=\left\{\mathrm{x} _1, \ldots, \mathrm{x} _\mathrm{n}\right\}$ of coin flips, where $\mathrm{x} _\mathrm{i}=$ 1 if it was heads, and $x_{\mathrm{L}} \mathrm{i}=0$ if it was tails
- What is $\mathrm{p}(\mathrm{D}$ I theta)?

$$
\begin{aligned}
p(\mathcal{D} \mid \theta) & =p\left(x_{1}, \ldots, x_{n} \mid \theta\right) \\
& =\prod_{i=1}^{n} p\left(x_{i} \mid \theta\right) \\
p(x \mid \theta) & =\theta^{x}(1-\theta)^{1-x}
\end{aligned}
$$

Example: maximum likelihood for discrete distributions

- How do we estimate theta?
- Counting:

- count the number of heads Nh
- count the number of tails Nt
- normalize: theta $=\mathrm{Nh} /(\mathrm{Nh}+\mathrm{Nt})$
- What if you actually try to maximize the likelihood?
- i.e., solve argmax $p(D$ I theta)

$$
\begin{aligned}
p(\mathcal{D} \mid \theta) & =p\left(x_{1}, \ldots, x_{n} \mid \theta\right) \\
& =\prod_{i=1}^{n} p\left(x_{i} \mid \theta\right) \\
p(x \mid \theta) & =\theta^{x}(1-\theta)^{1-x}
\end{aligned}
$$

Example: maximum likelihood for discrete distributions

- What if you actually try to maximize the likelihood to get theta?
- i.e., solve argmax $p(D$ I theta)

$$
\begin{gathered}
\max _{\theta} \prod_{i=1}^{n} p\left(x_{i} \mid \theta\right)=\max _{\theta} c(\theta) \\
c(\theta)=\prod_{i=1}^{n} p\left(x_{i} \mid \theta\right)
\end{gathered}
$$

$\arg \max _{\theta} c(\theta)=\arg \max _{\theta} \log c(\theta)$

$$
p(\mathcal{D} \mid \theta)=p\left(x_{1}, \ldots, x_{n} \mid \theta\right)
$$

$$
=\prod_{i=1}^{n} p\left(x_{i} \mid \theta\right)
$$

$$
p(x \mid \theta)=\theta^{x}(1-\theta)^{1-x}
$$

Example: maximum likelihood for discrete distributions

$$
\begin{array}{rlr}
\arg \max _{\theta} c(\theta) & =\underset{\theta}{\arg \max _{\theta} \log c(\theta)} \quad \begin{array}{l}
\log (a b) \\
\log c(\theta)
\end{array}=\log \prod_{i=1}^{n} p\left(x_{i} \mid \theta\right) & \log \left(a^{c}\right) \\
& =\sum_{i=1}^{n} \log p\left(x_{i} \mid \theta\right) \\
p(x \mid \theta) & =\theta^{x}(1-\theta)^{1-x} & \\
\log p(x \mid \theta) & =\log \left(\theta^{x}\right)+\log \left((1-\theta)^{1-x}\right) \\
& =x \log (\theta)+(1-x) \log (1-\theta)
\end{array}
$$

Example: maximum likelihood for discrete distributions

$\sum_{i=1}^{n} \log p\left(x_{i} \mid \theta\right)=\sum_{i=1}^{n} x_{i} \log (\theta)+\sum_{i=1}^{n}\left(1-x_{i}\right) \log (1-\theta)$

$$
\begin{aligned}
& =\log (\theta)\left(\sum_{i=1}^{n} x_{i}\right)+\log (1-\theta)\left(\sum_{i=1}^{n}\left(1-x_{i}\right)\right) \\
\bar{x} & =\sum_{i=1}^{n} x_{i} \\
\frac{d}{d \theta} & =\frac{1}{\theta} \bar{x}-\frac{1}{1-\theta}(n-\bar{x})=0
\end{aligned}
$$

Example: maximum likelihood for discrete distributions

$$
\begin{aligned}
\bar{x} & =\sum_{i=1}^{n} x_{i} \\
\frac{d}{d \theta} & =\frac{1}{\theta} \bar{x}-\frac{1}{1-\theta}(n-\bar{x})=0 \\
\Longrightarrow & \bar{x} \\
\Longrightarrow & =\frac{n-\bar{x}}{1-\theta} \\
\Longrightarrow & (1-\theta) \bar{x}=\theta(n-\bar{x}) \\
\Longrightarrow & \bar{x}-\theta \bar{x}=\theta n-\theta \bar{x} \\
\Longrightarrow & \theta=\frac{\bar{x}}{n}
\end{aligned}
$$

Back to Independence and Conditional independence

- What does it mean to say X and Y are independent?
- To say "independent", you have to have a distribution
- $p_{-} X Y(x, y)=p _X(x) p_{-} Y(y)$, need three three functions
- What is $\mathrm{p}_{-}\{\mathrm{XIZ}\}(\mathrm{x} \mid \mathrm{z})$?
- It's a Bernoulli
- If we know X is a coin, but don't know the bias, what is $p _X$?
- p_X = sum_z p_\{XIZ\}(x | z) p(z)
- What is $\mathrm{p} _\{X Y\}(x, y)$?
- p_\{XY\} = sum_z p_\{X,Y|Z\}(x,y I z) p(z) = sum_z p_\{XIZ\}(x I z) p_\{Y|Z\} ($y \mid z$) $p(z)$ not necessarily equal to $p_{-} X(x) p_{-} Y(y)$

Example: MAP for discrete distributions

- Imagine you are flipping a biased coin; the model parameter is the bias of the coin, theta
- You get a dataset $D=\left\{x _1, \ldots, x _n\right\}$ of coin 1 if it was heads, and $x_{-} i=0$ if it was tails
- What if we also specify p (theta)?

- What is the MAP estimate?

Example: MAP for discrete distributions

We still need to fully specify the prior $p(\theta)$. To avoid complexities resulting from continuous variables, we'll consider a discrete θ with only three possible states, $\theta \in\{0.1,0.5,0.8\}$. Specifically, we assume

$$
p(\theta=0.1)=0.15, p(\theta=0.5)=0.8, p(\theta=0.8)=0.05
$$

Example: MAP for discrete distributions

For an experiment with $N_{H}=2, N_{T}=8$, the posterior distribution is

If we were asked to choose a single a posteriori most likely value for θ, it would be $\theta=0.5$, although our confidence in this is low since the posterior belief that $\theta=0.1$ is also appreciable. This result is intuitive since, even though we observed more Tails than Heads, our prior belief was that it was more likely the coin is fair.

Example: MAP for discrete distributions

Repeating the above with $N_{H}=20, N_{T}=80$, the posterior changes to

so that the posterior belief in $\theta=0.1$ dominates. There are so many more tails than heads that this is unlikely to occur from a fair coin. Even though we a priori thought that the coin was fair, a posteriori we have enough evidence to change our minds.

Now on to some careful examples of MAP!

- Whiteboard for Examples 8, 9, 10, 11
- More fun with derivatives and finding the minimum of a function
- Next class:
- finish off parameter estimation
- introduction to prediction problems for ML

