
Course Review



Reminders/comments

• Mini-Project due this Friday

• Final exam: 2:00-4:00 p.m., Friday, December 15 
• ETLC E1 013

• Seating will be randomized, so you will need to find your seat

• Please complete the online course evaluation: 
• https://usri.srv.ualberta.ca/etw/ets/et.asp?nxappid=WCQ&nxmid=start
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Probability review

• Quantify uncertainty using probability theory

• Discussed sigma-algebras and probability measures

• Discussed random variables as functions of event-space

• Discussed relationships between random variables, including 
(in)dependence and conditional independence

• Discussed operations, like expected value, marginalization, 
Bayes rule, chain rule
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Exercise: probability

• Suppose that we have created a machine learning algorithm 
that predicts whether a link will be clicked with 99% sensitivity 
(TPR) and 99% specificity (FPR). The rate the link is actually 
clicked is 1/1000 visits to a website. If we predict the link will 
be clicked on a specific visit, what is the probability it will 
actually be clicked?

• Let C be binary RV, with C = 1 indicating predict click

• p(C = 1 | y = 1) = TPR

• p(C = 1 | y = 0) = 1-FPR
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MAP and ML

• See a set of random variables X1, …, Xn

• We assumed that these RVs are independent and identically 
distributed 

• Then we assumed a distribution for each p(Xi | theta) 
• e.g., p(Xi | theta) is a Gaussian

• How would our ML objectives change if we did not assume 
independence?
• previously maximized p(D | theta) = prod_{i=1}^n p(Xi | theta)
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Exercise: understand behaviour 
of algorithms

• Example: run NN twice on the same data. Should you expect 
to get about the same error on the testing set? 

• Example: give NN the same training data, in the same order, 
with the same starting point —> should it produce the same 
final set of weights?

• Example: when performing batch gradient descent with line 
search, should you expect loss(wt) to consistently decrease?

• Example: when performing stochastic gradient descent with a 
small fixed stepsize, should you expect loss(wt) to consistently 
decrease?
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5.3 Formalizing generalized linear models

We shall now formalize the generalized linear models. The two key compo-
nents of GLMs can be expressed as

1. f(E[y|x]) = !

Tx

2. p(y|x) 2 Exponential Family

Here, f(·) is called the link function between the linear combination of the
features and parameters of the distribution. On the one hand, the link func-
tion adjusts the range of !Tx to the domain of Y (because of this relation-
ship, link functions are usually not selected independently of the distribution
for Y ). On the other hand, it also provides a mechanism for a non-linear
relationship between the features and the target. While the nature of this
non-linear relationship is limited (the features enter the system via a linear
combination with the parameters) there is still an important flexibility they
provide for modeling. Similarly, the generalization to the exponential family
from the Gaussian distribution used in ordinary least-squares regression, al-
lows us to model a much wider range of target functions. The choice of the
link function and the probability distribution is data dependent.

Generally, there is no guarantee of a closed-form solution for w. There-
fore, GLM formulations usually resort to iterative techniques derived from
the Taylor approximation of the log-likelihood. Hence, a single mechanism
can be used for a wide range of link functions and probability distributions.
Let us write the log-likelihood
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which can be used to easily calculate the update rules of the optimization.
Interestingly, the standard versions of the GLM from the literature do not use
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Generalized linear models

• Generalize distribution p(y | x) to any exponential family model

• Result: learning parameters w such that
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Generalized linear models
• Can pick any natural exponential family distribution for p(y | x)

• If p(y | x) is Gaussian, then we get linear regression with      
<x, w> approximating E[y | x]

• If p(y | x) is Bernoulli, then we get logistic regression with      
sigmoid(<x, w>) approximating E[y | x]

• If p(y | x) is Poisson, then we get Poisson regression with      
exp(<x, w>) approximating E[y | x]

• If p(y | x) is a Multinomial (multiclass), then we get multinomial 
logistic regression with  softmax(<x, w>) approximating E[y | x]

• For all of these, just estimating w to get this dot product
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Generalized linear models
• Generalize distribution p(y | x) to exponential family model

• Result: learning parameters w such that

• Is this a nonlinear model?

9

5.3 Formalizing generalized linear models

We shall now formalize the generalized linear models. The two key compo-
nents of GLMs can be expressed as

1. f(E[y|x]) = !

Tx

2. p(y|x) 2 Exponential Family

Here, f(·) is called the link function between the linear combination of the
features and parameters of the distribution. On the one hand, the link func-
tion adjusts the range of !Tx to the domain of Y (because of this relation-
ship, link functions are usually not selected independently of the distribution
for Y ). On the other hand, it also provides a mechanism for a non-linear
relationship between the features and the target. While the nature of this
non-linear relationship is limited (the features enter the system via a linear
combination with the parameters) there is still an important flexibility they
provide for modeling. Similarly, the generalization to the exponential family
from the Gaussian distribution used in ordinary least-squares regression, al-
lows us to model a much wider range of target functions. The choice of the
link function and the probability distribution is data dependent.

Generally, there is no guarantee of a closed-form solution for w. There-
fore, GLM formulations usually resort to iterative techniques derived from
the Taylor approximation of the log-likelihood. Hence, a single mechanism
can be used for a wide range of link functions and probability distributions.
Let us write the log-likelihood

ll(w) = log

n
Y

i=1

e✓
T
t(xi)�a(✓)+b(xi)

=

X

i

X

m

✓mtm(xi)� n · a(✓) +
X

i

b(xi)

=

X

i

lli(w)

and also find the elements of its gradient

@lli(w)

@wj
=

X

m

@✓m
@wj

tm(xi)�
@a(✓)

@wj

which can be used to easily calculate the update rules of the optimization.
Interestingly, the standard versions of the GLM from the literature do not use

86

g



Classification

• Logistic regression

• Multinomial logistic regression

• Naive Bayes
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Exercise

• What model might you use if 
• we have binary features and targets?

• binary targets and continuous features?

• positive targets?

• categorical features with a large number of categories?

• multi-class targets, with continuous features?

• When might logistic regression do better than linear regression?

• When might Poisson regression do better than linear regression?
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Generative vs Discriminative

• Logistic regression: learned p(y | x)

• Naive Bayes: learned p(x | y) and p(y)

• When might you think naive Bayes might be better? When 
might logistic regression be better?
• hard to say for sure, but hypothesize based on your understanding

• e.g., which one might have higher/lower bias and higher/lower 
variance?
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Exercise: How do we make naive Bayes 
and logistic regression more focused on 

recent samples?

• Imagine the data is slowly drifting
• e.g., trends in human population

• e.g., components of a physical system (robot) slowly wear out

• What incremental learning approach might make logistic 
regression more reactive to recent data?
• e.g., batch approach versus stochastic approach

• What about updating our naive Bayes models?
• recall the solutions are sample averages for each class, so it was 

straightforward to compute a running mean and running variance
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Computing numerically stable 
running mean and variance

• Another algorithm: Welford’s algorithm
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Exponential average
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Representation learning

• Fixed representations
• polynomial expansions

• Radial basis function networks — can be learning here, in terms of 
selecting centers or parameters to kernels

• Learned representations
• neural networks

• matrix factorization, for dictionary learning such as sparse coding
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Whiteboard
• Practice final overview

• General comments:
• In some cases lots of space, but doesn’t mean you need to fill the 

entire page. If the answer can be concisely state in 2 sentences, that 
is perfectly reasonable

• I am not looking for one specific “right” answer. I am looking for your 
thought process, to see if you understood the material

• In the past, the wrong answer has been given (e.g., true, false 
question), but I gave full marks because the reasoning demonstrated 
understanding

• Two common mistakes: (a) giving multiple answers, in case one is 
right. You’ll lose marks for this (b) answering a different question than 
the one asked (read the question)
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