Bayesian approach

Comments

- Post about final grades
- Hopefully feedback helps for final draft of mini-project
- Course review and practice final next class. Any topics?
- gradient descent
- regularization, and its purpose
- ML and MAP? e.g., examples with other distributions
- formalizing prediction problems? weighted losses? other losses?
- basic optimization strategies?
- generalized linear models?
- neural networks, matrix factorization

Comments about experiments

- Some confusion about experiments
- External and internal cross validation
- One training and test split: any issues?
- One question I have heard: If you did this, how do you get multiple samples of error?
- What are you really answering? Does this match what a practitioner would do?
- What is the difference between doing multiple training and test splits, and one training-test split?
- Make choices, and justify those choices

Bayesian learning

- Goal is to keep distribution over parameters
- $\mathrm{p}\left(\mathrm{w}\right.$ I D) rather than w^{*}
- Frequentist approach: find the most likely ("best") parameters
- this is what we have been doing so far with ML and MAP
- We still use Bayes rule to compute posterior p(w I D), but now not taking argmax $\mathrm{p}(\mathrm{w} \mid \mathrm{D})$, but rather keeping distribution

Bias of a coin

$$
v^{n}= \begin{cases}1 & \text { if on toss } n \text { the coin comes up heads } \\ 0 & \text { if on toss } n \text { the coin comes up tails }\end{cases}
$$

Our aim is to estimate the probability θ that the coin will be a head, $p\left(v^{n}=1 \mid \theta\right)=\theta$ - called the 'bias' of the coin.

$$
p\left(v^{1}, \ldots, v^{N}, \theta\right)=p(\theta) \prod_{n=1}^{N} p\left(v^{n} \mid \theta\right)
$$

A prior for discrete parameters

We still need to fully specify the prior $p(\theta)$. To avoid complexities resulting from continuous variables, we'll consider a discrete θ with only three possible states, $\theta \in\{0.1,0.5,0.8\}$. Specifically, we assume

$$
p(\theta=0.1)=0.15, p(\theta=0.5)=0.8, p(\theta=0.8)=0.05
$$

The posterior for discrete parameters

$$
\begin{aligned}
p\left(\theta \mid v^{1}, \ldots, v^{N}\right) & \propto p(\theta) \prod_{n=1}^{N} p\left(v^{n} \mid \theta\right) \\
& =p(\theta) \prod_{n=1}^{N} \theta^{\mathbb{I}\left[v^{n}=1\right]}(1-\theta)^{\mathbb{I}\left[v^{n}=0\right]} \\
& \propto p(\theta) \theta^{\sum_{n=1}^{N} \mathbb{I}\left[v^{n}=1\right]}(1-\theta)^{\sum_{n=1}^{N} \mathbb{I}\left[v^{n}=0\right]}
\end{aligned}
$$

Hence

$$
p\left(\theta \mid v^{1}, \ldots, v^{N}\right) \propto p(\theta) \theta^{N_{H}}(1-\theta)^{N_{T}}
$$

$N_{H}=\sum_{n=1}^{N} \mathbb{I}\left[v^{n}=1\right]$ is the number of occurrences of heads.
$N_{T}=\sum_{n=1}^{N} \mathbb{I}\left[v^{n}=0\right]$ is the number of tails.

Posterior after 10 flips

For an experiment with $N_{H}=2, N_{T}=8$, the posterior distribution is

Posterior after 100 flips

Repeating the above with $N_{H}=20, N_{T}=80$, the posterior changes to

Continuous parameters

- Can ask the same question for continuous parameters
- Prior is then a density, rather than a set of probabilities
- Can do the same procedure but now the normalization is not as simple (have to integrate, or find closed form for integral)
- for discrete parameter, we found p (theta I D) prop-to $p(D$ I theta) p (theta), and then normalized the three values afterwards

Pros/Cons

$\sqrt{ }$ A Bayesian would like say that Bayesian approaches are the "right" way to think about inference and estimation
$\sqrt{ }$ A good experts approach: Can more strongly influence learning with choice of prior
$\sqrt{ }$ Have a distribution over parameters, giving some measure of certainty

- Specifying a prior can be difficult (must carefully choose, limited often to a restricted set if computation matters)
- Can often involve numerical integration, which is computationally intensive

Whiteboard

- Bayesian approach for Poisson models
- Bayesian approach for linear regression
- If time: generalization bounds

