Bayesian approach

Comments

- Post about final grades
- Hopefully feedback helps for final draft of mini-project
- Course review and practice final next class. Any topics?
 - gradient descent
 - regularization, and its purpose
 - ML and MAP? e.g., examples with other distributions
 - formalizing prediction problems? weighted losses? other losses?
 - basic optimization strategies?
 - generalized linear models?
 - neural networks, matrix factorization

Comments about experiments

- Some confusion about experiments
- External and internal cross validation
- One training and test split: any issues?
 - One question I have heard: If you did this, how do you get multiple samples of error?
 - What are you really answering? Does this match what a practitioner would do?
- What is the difference between doing multiple training and test splits, and one training-test split?
- Make choices, and justify those choices

Bayesian learning

- Goal is to keep distribution over parameters
 - p(w I D) rather than w*
- Frequentist approach: find the most likely ("best") parameters
 - this is what we have been doing so far with ML and MAP
- We still use Bayes rule to compute posterior p(w I D), but now not taking argmax p(w I D), but rather keeping distribution

Bias of a coin

$$v^{n} = \begin{cases} 1 & \text{if on toss } n \text{ the coin comes up heads} \\ 0 & \text{if on toss } n \text{ the coin comes up tails} \end{cases}$$

Our aim is to estimate the probability θ that the coin will be a head, $p(v^n = 1|\theta) = \theta$ – called the 'bias' of the coin.

$$p(v^1, \dots, v^N, \theta) = p(\theta) \prod_{n=1}^N p(v^n | \theta)$$

A prior for discrete parameters

We still need to fully specify the prior $p(\theta)$. To avoid complexities resulting from continuous variables, we'll consider a discrete θ with only three possible states, $\theta \in \{0.1, 0.5, 0.8\}$. Specifically, we assume

$$p(\theta = 0.1) = 0.15, \ p(\theta = 0.5) = 0.8, \ p(\theta = 0.8) = 0.05$$

The posterior for discrete parameters

$$p(\theta|v^{1},...,v^{N}) \propto p(\theta) \prod_{n=1}^{N} p(v^{n}|\theta)$$

= $p(\theta) \prod_{n=1}^{N} \theta^{\mathbb{I}[v^{n}=1]} (1-\theta)^{\mathbb{I}[v^{n}=0]}$
 $\propto p(\theta) \theta^{\sum_{n=1}^{N} \mathbb{I}[v^{n}=1]} (1-\theta)^{\sum_{n=1}^{N} \mathbb{I}[v^{n}=0]}$

Hence

$$p(\theta|v^1,\ldots,v^N) \propto p(\theta)\theta^{N_H} (1-\theta)^{N_T}$$

 $N_H = \sum_{n=1}^N \mathbb{I}[v^n = 1]$ is the number of occurrences of heads. $N_T = \sum_{n=1}^N \mathbb{I}[v^n = 0]$ is the number of tails.

Posterior after 10 flips

For an experiment with $N_H = 2$, $N_T = 8$, the posterior distribution is

Posterior after 100 flips

Repeating the above with $N_H = 20$, $N_T = 80$, the posterior changes to

Continuous parameters

- Can ask the same question for continuous parameters
- Prior is then a density, rather than a set of probabilities
- Can do the same procedure but now the normalization is not as simple (have to integrate, or find closed form for integral)
 - for discrete parameter, we found p(theta I D) prop-to p(D I theta) p(theta), and then normalized the three values afterwards

Pros/Cons

✓ A Bayesian would like say that Bayesian approaches are the "right" way to think about inference and estimation

- A good experts approach: Can more strongly influence learning with choice of prior
- Have a distribution over parameters, giving some measure of certainty
- Specifying a prior can be difficult (must carefully choose, limited often to a restricted set if computation matters)
- Can often involve numerical integration, which is computationally intensive

Whiteboard

- Bayesian approach for Poisson models
- Bayesian approach for linear regression
- If time: generalization bounds