
Bayesian approach



Comments
• Post about final grades

• Hopefully feedback helps for final draft of mini-project

• Course review and practice final next class. Any topics?
•  gradient descent

• regularization, and its purpose

• ML and MAP? e.g., examples with other distributions

• formalizing prediction problems? weighted losses? other losses?

• basic optimization strategies?

• generalized linear models?

• neural networks, matrix factorization
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Comments about experiments
• Some confusion about experiments

• External and internal cross validation 

• One training and test split: any issues? 
• One question I have heard: If you did this, how do you get multiple 

samples of error?

• What are you really answering? Does this match what a practitioner 
would do?

• What is the difference between doing multiple training and test 
splits, and one training-test split?

• Make choices, and justify those choices
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Bayesian learning

• Goal is to keep distribution over parameters
• p(w | D) rather than w*

• Frequentist approach: find the most likely (“best”) parameters
• this is what we have been doing so far with ML and MAP

• We still use Bayes rule to compute posterior p(w | D), but now 
not taking argmax p(w | D), but rather keeping distribution
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Bias of a coin
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Learning the bias of a coin

v

n
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⇢
1 if on toss n the coin comes up heads
0 if on toss n the coin comes up tails

Our aim is to estimate the probability ✓ that the coin will be a head,
p(v

n
= 1|✓) = ✓ – called the ‘bias’ of the coin.

Building a model
The variables are v
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N and ✓ and we require a model of the probabilistic
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Figure : (a): Belief network for

coin tossing model. (b): Plate
notation equivalent of (a). A plate

replicates the quantities inside the

plate a number of times as specified

in the plate.
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A prior for discrete parameters
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The prior

We still need to fully specify the prior p(✓). To avoid complexities resulting from
continuous variables, we’ll consider a discrete ✓ with only three possible states,
✓ 2 {0.1, 0.5, 0.8}. Specifically, we assume

p(✓ = 0.1) = 0.15, p(✓ = 0.5) = 0.8, p(✓ = 0.8) = 0.05

✓

0.1 0.5 0.8



The posterior for discrete 
parameters
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The posterior

p(✓|v1, . . . , vN ) / p(✓)

NY
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Hence

p(✓|v1, . . . , vN ) / p(✓)✓

NH
(1� ✓)

NT

NH =

PN
n=1 I [vn = 1] is the number of occurrences of heads.

NT =

PN
n=1 I [vn = 0] is the number of tails.



Posterior after 10 flips
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Coin posterior

For an experiment with NH = 2, NT = 8, the posterior distribution is

✓

0.1 0.5 0.8

✓

0.1 0.5 0.8

If we were asked to choose a single a posteriori most likely value for ✓, it would be
✓ = 0.5, although our confidence in this is low since the posterior belief that
✓ = 0.1 is also appreciable. This result is intuitive since, even though we observed
more Tails than Heads, our prior belief was that it was more likely the coin is fair.



Posterior after 100 flips
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The coin posterior

Repeating the above with NH = 20, NT = 80, the posterior changes to

✓

0.1 0.5 0.8

✓

0.1 0.5 0.8

so that the posterior belief in ✓ = 0.1 dominates. There are so many more tails
than heads that this is unlikely to occur from a fair coin. Even though we a priori

thought that the coin was fair, a posteriori we have enough evidence to change our
minds.

The posterior e↵ect
Note that in both examples, NT /NH = 4, although in the latter we are much more
confident that ✓ = 0.1



Continuous parameters

• Can ask the same question for continuous parameters

• Prior is then a density, rather than a set of probabilities

• Can do the same procedure but now the normalization is not 
as simple (have to integrate, or find closed form for integral)
• for discrete parameter, we found p(theta | D) prop-to p(D | theta) 

p(theta), and then normalized the three values afterwards  
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Pros/Cons

✓A Bayesian would like say that Bayesian approaches are the 
“right” way to think about inference and estimation

✓A good experts approach: Can more strongly influence 
learning with choice of prior

✓Have a distribution over parameters, giving some measure of 
certainty

- Specifying a prior can be difficult (must carefully choose, 
limited often to a restricted set if computation matters)

- Can often involve numerical integration, which is 
computationally intensive
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Whiteboard

• Bayesian approach for Poisson models

• Bayesian approach for linear regression

• If time: generalization bounds
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