Neural network
architectures

3 hidden neurons © hidden neurons 20 hidden neurons

Comments

 Reviews for mini-projects due on Friday at midnight

e Clarification about margin bound for boosting, updated in
lecture slides

Recall NNs

e Generically: a network of neurons

e Can have many architectures; we have looked at feedforward
neural networks

- directed connections
» acyclic connections (no connections backwards)

* neurons composed of dot products with input, and activation function
(such as relu, tanh, sigmoid)

Other models

Convolutional Neural Network
Recurrent Neural Network
Long-term Short-term Memory (LSTM)

Extensions to distributions: integrate over hidden variables

What is the right architecture?

Fun answer: we don’t know!

New architectures constantly proposed, hard to track exactly
what is performing best

Many more architectures we could consider

You get to be in Al during a time where we get to investigate
this question

Properties we might want

e What we want: generalize well across many tasks, promote
faster learning (either computationally or in terms of samples)

 Properties that might help achieve this
- Independence — do not want correlated features, slows learning

- Sparsity — because it encourages decorrelated features, locality
and seems to be better for incremental learning

- Invariance — we may want to be robust to shifting, scaling, rotating
or permuting an input

- Overcome partial observability — memory

Uncorrelated features

e We have seen one way to get uncorrelated features: principal
components analysis (PCA)

- dictionary learning/factorization with small k, least-squares loss

e Start with d features —> generate k new features that are
linearly uncorrelated, but capture much of the signal in the
data

e Other such strategies: independent component analysis

Sparsity

e This is less well-understood, but has some empirical support

e Approaches:

 sparse coding for dictionary learning

» sparse layers in neural networks

e Particularly for reinforcement learning sparsity seems key

Basis approaches, that capture locality

« CMAQC, i.e., tile coding seems much more stable for incremental
learning

Invariance

Imagine have an image

Now just want to identify if a sun is in the image or not

* 1tis not relevant where it is in the image
How might we do this?

Let’s go back to our view of one layer as a filter

One layer can act like a filter

e Dot-product with input x, and a weight vector w, can
emphasize or filter parts of x

* e.g., Imagine x is an image, and w is zero everywhere except one
small patch in the corner. It will pick out the magnitude of pixels in
that small patch

10 *awesome overview: http://cs231n.github.io/convolutional-networks/

11

How set w to find an object?

Consider a fully connected NN

Each hidden node corresponds to the input image filtered by
the weights w —> picks out parts of the image where w is
non-zero

We could define w1, ..., wk where w1 has a sun in the top
corner (zero elsewhere), w2 has a sun in the top middle (zero
elsewhere), ...

If there is a sun in one of these quadrants, the hidden layer
will have at least one node significantly activated

The next layer could simply take the max of these activations
(called max pooling)

12

What if we want to learn this
fllter?

In the previous example, fixed wi to filter out suns

What if we want to learn filters, to find objects automatically
that are useful for classification (say)?

We would need to ensure that w1, ..., wk only had non-zero
values in their respective quadrants AND that they all had the
same filter structure to extract the same object

 That’s a lot of constraints!

How might we enforce which quadrant each wi filters?

13

Alternative to constraining
equivalent parameters

e Instead, will only learn one filter w, and share it across the
gquadrants

e This corresponds to the convolution operator

- can still think of it like a feedforward NN, but with these weights to be
constrained to be the same

e Of course, we can have multiple such filters

« one extracts edges of one sort, another circles, etc.

Example for images: Typical
feed-forward NN

32x32x3 image -> stretch to 3072 x 1

input

1 —
3072

Wx

10 x 3072
weights

Throws away spatial structure

activation
— 1 (O
/4 10
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

14 *from: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lectureb.pdf

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf

Example: convolutional layer

___— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

] wiz+b

~ 1 number:

Image is 32x32, with 3 RGB colour channels

15

16

Output of convolutional layer

_— 32x32x3 image
5x5x3 filter

V

=0

32

convolve (slide) over all
spatial locations

Why 28 x 28 x 17

activation map

L

L

28

17

Multiple convolutions

Convolution Layer consider a second, green filter

_— 32x32x3 image activation maps

5x5x3 filter %
L
@>@ N

convolve (slide) over all

spatial locations
32 / 28

3 1

Can also vary stride: amount of shift. Here we shift by 1;
what if we shift by 37

Qutput size: (32-5)/stride + 1

18

Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64

112x112x64

pool

—.’

> e 112
224 downsampling

224

19

Single depth slice

Max pooling

11112 | 4
5| 6| 7|38
312|110
1123 | 4

max pool with 2x2 filters
and stride 2

>

20

Example: LeNet for classifying
iImages Iin ImageNet

pool1

—

conv2 pool2 hiddend output

N

Example of hidden layers in a

convolutional network

= BEEN = MY, RELU RELU RELU RELU

CONV 1CONV1 CONV lCONVl CONV lCONVl FC

o |] l

= | | car

= | [= 4 ial~ml—,

_ ||S=j=- — - - ol - ﬁ _E airplane

- _ — | o= [
mmleml lmml ==l lmml o lemimml L

Sl W= =]

= ’ —| =] I £ jworse

i 1 = L | L

= = |mf

*awesome overview: http://cs231n.github.io/convolutional-networks/

22

Other operators

e Average pooling (and other pooling) also used; max pooling
more popular right now

e Different layers components come in and out of favour pretty
consistently

SKipping connections

e We have so far assumed that arrows only point into the next
layer

e Of course, could have arrows skip layers

e Example: Residual Network

X |

¥
weight layer
]—“(x) l relu .
weight layer identity

F(x) +x

A residual block

24

How do we optimize through
these layers?

e How do we take the derivative for the shared parameters?
e How do we take derivatives when layers are skipped?

e How do we take the derivative through the max pooling
operation?

« Any issues here?

- How might we select the stepsize?

25

Exercise: approximate Hessian

e |et’s take a diagonal approximation to the Hessian, to give us
a vector of stepsizes

» this is essentially what adagrad and adadelta are doing

e max is non-differentiable; does this give issues with the
Hessian?

20

Thought exercise: Why GD?

* We use gradient descent alot; aren’t there alternatives?
 Our goal: maximize (or minimize) function f

* Depending on properties of f, different optimization strategies
- Naive (but general) option: guess a bunch of solutions

- Combinatorial optimization problems (e.g., find best subset of items);
could try to formulate as submodular maximization problem

If add constraints, could formulate as linear programs, quadratic
programs, semi-definite programs

- Black-box approaches with fewer guarantees, e.g. genetic algorithms

If know function is differentiable, gradient-based approaches provide a
lot of search information

- Many, many GD approaches, e.g., BGD, SGD, second-order,
conjugate gradient, ADMM, block coordinate descent,

27

Temporal data

e So far have looked only at i.i.d. data

 Time series (temporal): sequence of temporally connected
samples: x1, x2,, xt

* e.g., weather

e Common strategy: use a history of p points (lag p)

- Intuitively, what happened in most recent p steps, should be
predictive of what will happen next

+ Cold for the last 5 days suggests it will be cold tomorrow

28

Simplest strategy

Create a new dataset, where targets are x_i and features for
that target are [x_{i-1}, ..., x_{i-p}]

Use your favourite supervised learning algorithm

* learning conditional distribution p(x_i | x_{i-1}, ..., x_{i-p})

Two problems:

- what if chose p too small?

* now have to learn p weights for each vector x_li

A more compact approach might be to learn a hidden state

29

Recurrent Neural Network

* [ime steps not obvious
5 * Recurrent connection means previous
O state inputted for the next step
* Qutput (target) is a function of this

% hidden state
1%
S
8
U
St — f(St—laxt)
X

*image from Nature

Recurrent Neural Network

How do we learn the weights w?

0,

O Ot—l Ot Ot+1
VT W V VT V
S w St—l St St+1
> > > > () > () >
T Unfold
—1 t +1

w W W
X, X

U

X X

t

*image from Nature

31

How long is the memory?

Can unroll all the way back in time

St = f(st—lyxt)
— f(f(St_Q,xt—l)vxt)
— f(f(f(st_g,xt_z),fvt—l)axt)

Technically a function of infinite lag back in time
Practically (numerically) dependence drops off

Gradients back in time stopped after some fixed lag p

Selective memory

e |n addition to keeping (even if implicitly) all observations back
In time, could select what to store

e |Long-term Short-term Memory (LSTM) architectures one such

approach @
i t

35 * http://colah.github.io/posts/2015-08-Understanding-LSTMs/

33

* http://colah.github.io/posts/2015-08-Understanding-LSTMs/

34

Example: forgetting

fe =0 (Wp-lhi—1,2¢] + by)

