
Neural network 
architectures



Comments

• Reviews for mini-projects due on Friday at midnight

• Clarification about margin bound for boosting, updated in 
lecture slides

2



Recall NNs

• Generically: a network of neurons

• Can have many architectures; we have looked at feedforward 
neural networks
• directed connections

• acyclic connections (no connections backwards)

• neurons composed of dot products with input, and activation function 
(such as relu, tanh, sigmoid)

3



Other models

• Convolutional Neural Network

• Recurrent Neural Network

• Long-term Short-term Memory (LSTM)

• Extensions to distributions: integrate over hidden variables

4



What is the right architecture?

• Fun answer: we don’t know!

• New architectures constantly proposed, hard to track exactly 
what is performing best

• Many more architectures we could consider

• You get to be in AI during a time where we get to investigate 
this question

5



Properties we might want

• What we want: generalize well across many tasks, promote 
faster learning (either computationally or in terms of samples)

• Properties that might help achieve this
• Independence — do not want correlated features, slows learning

• Sparsity — because it encourages decorrelated features, locality 
and seems to be better for incremental learning

• Invariance — we may want to be robust to shifting, scaling, rotating 
or permuting an input

• Overcome partial observability — memory

• …

6



Uncorrelated features

• We have seen one way to get uncorrelated features: principal 
components analysis (PCA) 
• dictionary learning/factorization with small k, least-squares loss

• Start with d features —> generate k new features that are 
linearly uncorrelated, but capture much of the signal in the 
data

• Other such strategies: independent component analysis 

7



Sparsity

• This is less well-understood, but has some empirical support

• Approaches: 
• sparse coding for dictionary learning

• sparse layers in neural networks

• Particularly for reinforcement learning sparsity seems key
• Basis approaches, that capture locality

• CMAC, i.e., tile coding seems much more stable for incremental 
learning

8



Invariance

• Imagine have an image

• Now just want to identify if a sun is in the image or not
• it is not relevant where it is in the image

• How might we do this?

• Let’s go back to our view of one layer as a filter

9



One layer can act like a filter
• Dot-product with input x, and a weight vector w, can 

emphasize or filter parts of x
• e.g., imagine x is an image, and w is zero everywhere except one 

small patch in the corner. It will pick out the magnitude of pixels in 
that small patch

10 *awesome overview: http://cs231n.github.io/convolutional-networks/



How set w to find an object?
• Consider a fully connected NN

• Each hidden node corresponds to the input image filtered by 
the weights w —> picks out parts of the image where w is 
non-zero

• We could define w1, …, wk where w1 has a sun in the top 
corner (zero elsewhere), w2 has a sun in the top middle (zero 
elsewhere), …

• If there is a sun in one of these quadrants, the hidden layer 
will have at least one node significantly activated

• The next layer could simply take the max of these activations 
(called max pooling)

11



What if we want to learn this 
filter?

• In the previous example, fixed wi to filter out suns

• What if we want to learn filters, to find objects automatically 
that are useful for classification (say)?

• We would need to ensure that w1, …, wk only had non-zero 
values in their respective quadrants AND that they all had the 
same filter structure to extract the same object
• That’s a lot of constraints!

• How might we enforce which quadrant each wi filters?

12



Alternative to constraining 
equivalent parameters

• Instead, will only learn one filter w, and share it across the 
quadrants

• This corresponds to the convolution operator
• can still think of it like a feedforward NN, but with these weights to be 

constrained to be the same

• Of course, we can have multiple such filters
• one extracts edges of one sort, another circles, etc.

13



Example for images: Typical 
feed-forward NN

14

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201727

3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10

*from: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf

Throws away spatial structure

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture5.pdf


Example: convolutional layer

15

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201731

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Image is 32x32, with 3 RGB colour channels



Output of convolutional layer

16

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201732

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

Why 28 x 28 x 1?



Multiple convolutions

17

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201733

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter

Can also vary stride: amount of shift. Here we shift by 1; 
what if we shift by 3?

Output size: (32-5)/stride + 1



Pooling layer

18Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201772

Pooling layer
- makes the representations smaller and more manageable 
- operates over each activation map independently:



Max pooling

19

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201773

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING



Example: LeNet for classifying 
images in ImageNet

20



Example of hidden layers in a 
convolutional network

21 *awesome overview: http://cs231n.github.io/convolutional-networks/



Other operators

• Average pooling (and other pooling) also used; max pooling 
more popular right now

• Different layers components come in and out of favour pretty 
consistently

22



Skipping connections
• We have so far assumed that arrows only point into the next 

layer

• Of course, could have arrows skip layers

• Example: Residual Network

23



How do we optimize through 
these layers?

• How do we take the derivative for the shared parameters?

• How do we take derivatives when layers are skipped?

• How do we take the derivative through the max pooling 
operation?
• Any issues here?

• How might we select the stepsize?

24



Exercise: approximate Hessian

• Let’s take a diagonal approximation to the Hessian, to give us 
a vector of stepsizes
• this is essentially what adagrad and adadelta are doing

• max is non-differentiable; does this give issues with the 
Hessian?

25



Thought exercise: Why GD?
• We use gradient descent alot; aren’t there alternatives?

• Our goal: maximize (or minimize) function f

• Depending on properties of f, different optimization strategies
• Naive (but general) option: guess a bunch of solutions

• Combinatorial optimization problems (e.g., find best subset of items); 
could try to formulate as submodular maximization problem

• If add constraints, could formulate as linear programs, quadratic 
programs, semi-definite programs

• Black-box approaches with fewer guarantees, e.g. genetic algorithms

• If know function is differentiable, gradient-based approaches provide a 
lot of search information 

• Many, many GD approaches, e.g., BGD, SGD, second-order, 
conjugate gradient, ADMM, block coordinate descent,26



Temporal data

• So far have looked only at i.i.d. data

• Time series (temporal): sequence of temporally connected 
samples: x1, x2, …., xt
• e.g., weather

• Common strategy: use a history of p points (lag p)
• Intuitively, what happened in most recent p steps, should be 

predictive of what will happen next

• Cold for the last 5 days suggests it will be cold tomorrow

27



Simplest strategy

• Create a new dataset, where targets are x_i and features for 
that target are [x_{i-1}, …, x_{i-p}]

• Use your favourite supervised learning algorithm
• learning conditional distribution p(x_i | x_{i-1}, …, x_{i-p})

• Two problems: 
• what if chose p too small?

• now have to learn p weights for each vector x_i

• A more compact approach might be to learn a hidden state

28



Recurrent Neural Network

29 *image from Nature

• Time steps not obvious 
• Recurrent connection means previous 

state inputted for the next step 
• Output (target) is a function of this 

hidden state

st = f(st�1, xt)



Recurrent Neural Network

30 *image from Nature

How do we learn the weights w?



How long is the memory?

• Can unroll all the way back in time

• Technically a function of infinite lag back in time

• Practically (numerically) dependence drops off

• Gradients back in time stopped after some fixed lag p
31

st = f(st�1, xt)

= f(f(st�2, xt�1), xt)

= f(f(f(st�3, xt�2), xt�1), xt)

= ...



Selective memory
• In addition to keeping (even if implicitly) all observations back 

in time, could select what to store

• Long-term Short-term Memory (LSTM) architectures one such 
approach

32 * http://colah.github.io/posts/2015-08-Understanding-LSTMs/



LSTM

33 * http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Example: forgetting

34


