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Reminders/Comments

e |nitial drafts due today
- Some consternation about how open-ended it is

- There are no specific requirements, so we will be more lenient. But
you do have to justify your choices; if you can't justify it, its likely a
poor choice

- Sample feedback

e Practice final released

e Review class next Thursday



How to give feedback

It should look like an actual conference review:

Summary of the paper/project

Some positive feedback about what is done well

Some constructive criticism about what needs to be improved

Any other suggestions that can help out the person



Collections of models

e Have mostly discussed learning one single “best” model
* Dbest linear regression model

* best neural network model

e Can we take advantage of multiple learned models?



Rationale

 There is no algorithm that is always the most accurate

e Different learners can use different
» Algorithms (e.g., logistic regression or SVMs)
- Parameters (e.g., regularization parameters)
- Representations (e.g., polynomial basis or kernels)

+ Training sets (e.g., two different random subsamples of data)

e The problem: how to combine them



Ensembles

e Can a set of weak learners create a single strong learner?

e Answer: yes! See seminal paper: “The Strength of Weak
Learnability” Schapire, 1990

e Why do we care?

 can be easier to specify weak learners e.g., shallow decision trees,
set of neural networks with smaller number of layers, etc.

- fighting the bias-variance trade-off



v

Weak learners

e Weak learners: naive Bayes, logistic regression, decision
stumps (or shallow decision trees)

logistic regression decision stump

*some material from slides by Eric Xing: http://www.cs.cmu.edu/~epxing/Class/10701-11f/Lecture/lecture22.pdf



Example of a decision stump

x2 > 0.48
no yes
-1

:

Decision tree provides more splits;
decision stump Is a one level decision tree



How learn signed prediction?

e Decision-stump outputs sign(<x, w>)

e |ogistic regression and linear regression: take learned w, and
prediction is set to sign(<x,w>)

e Support vector machines: minimize hinge loss
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A side point about SVMs

e Support vector machine: minimize hinge loss while also
adding goal to maximize the margin

Margin / X (Xs, Ys)

wWo + w11 + wexs =0



Weak learners

e Weak learners: naive Bayes, logistic regression, decision
stumps (or shallow decision trees)

Are good © - Low variance, don’t usually overfit
Are bad ® - High bias, can’t solve hard learning problems

11 *some material from slides by Eric Xing: http://www.cs.cmu.edu/~epxing/Class/10701-11f/Lecture/lecture22.pdf



Bias-variance tradeoft

e We encountered this trade-off for weights in linear regression

 Regqularizing introduced bias, but reduced variance

~ - - 2
MSE(#) = Var(d) + (_jia,s[a. a}) |

e More generally, when picking functions
Var(f) + Bias(f, f)’

How might you specity bias between functions?

12
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Voting (Ensemble methods)

e |nstead of learning a single (weak) classifier, learn many
weak classifiers that are good at different parts of the
input space

e Output class: (Weighted) vote of each classifier
Classifiers that are most “sure” will vote with more conviction

Classifiers will be most “sure” about a particular part of the
space. On average, do better than single classifier!

. H: X = Y (-1,1)
h1(X) . h2(X)

A e HX) = h(X)+ha(X)

H(X) = sign() at ht(X))
t

weights




Voting (Ensemble methods)

e Instead of learning a single (weak) classifier, learn many

weak classifiers that are good at different parts of the
input space

e Output class: (Weighted) vote of each classifier
Classifiers that are most “sure” will vote with more conviction

Classifiers will be most “sure” about a particular part of the
space On average, do better than single classifier!

e But how do you
force classifiers ht to learn about different parts of the input

space? weight the votes of different classifiers? at
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Boosting [Schapire 89]

e |dea: given a weak learner, run it multiple times on
(reweighted) training data, then let learned classifiers vote

e On each iteration t:

* weight each training example by how incorrectly it was classified

- Learn a weak hypothesis — ht

» Obtain a strength for this hypothesis — at

e Final classifier: |H(X) = sign(3at ht(X))




Combination of classifiers

e Suppose we have a family of component classifiers
(generating £1 labels) such as decision stumps:

h(x;6) =sign(wx, +b)

where 0= {k,w,b}

e Each decision stump pays
attention to only a single
component of the

x2 > 0.48
no yes

iInput vector

-1 1
10

w=1 k=2 b=0.48
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Combination of classifiers

e We'd like to combine the simple classifiers additively so that
the final classifier is the sign of

h(x) = ah(x:0,) +...+a h(x;6.)

where the “votes” {«;} emphasize component classifiers that
make more reliable predictions than others

Recall
e On each iteration t:

* weight each training example by how incorrectly it was classified

- Learn a weak hypothesis — ht

« Obtain a strength for this hypothesis — at
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Boosting example with
decision stumps
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Boosting example with
decision stumps
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AdaBoost
-

e Input:
o Nexamples Sy = {(xpy).--s (Xpyp)}
e aweak base learner h = h(x,6)

e Initialize: equal example weights w. = I/N for all i = I..N

o Iterateforr=1...T:

1. train base learner according to weighted example set (w,,x) and obtain hypothesis
h,= h(x,6)

2. compute hypothesis error &
3. compute hypothesis weight ¢,
4. update example weights for next iteration w, ,

e Output: final hypothesis as a linear combination of A,
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Adaboost

e At the kth iteration we find (any) classifier 4(x; ,*) for which
the weighted classification error:

&= ) Wy, #h(x;:60) | Y W)
i=1 i=1

IS better than chance.
e Thisis meant to be "easy" --- weak classifier

e Determine how many “votes” to assign to the new component

classifier: epsilon small,
a, =0.5log((1-¢,)/e,)  (1-epsilon)/epsilon is big
e stronger classifier gets more votes epsilon = 0.5 (random),
alpha =0

e Update the weights on the training examples:

wh=w'" expl-y,a,h(x,;6,)]

W =exp(—yif(z:) ()= arh(-:6)
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Base learners

e Weak learners used in practice:
Decision stumps
Decision trees (e.g. C4.5 by Quinlan 1996)
- Multi-layer neural networks

Radial basis function networks

e Can base learners operate on weighted examples?

In many cases they can be modified to accept weights along with the
examples

In general, we can sample the examples (with replacement)
according to the distribution defined by the weights
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Exercise

e How can we modify logistic regression with kernel features to
use different weights for each example?

e Can we modify naive Bayes to use different weights for each
example? How might we go about checking this?
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Generalization error bounds for
Adaboost

/ Y
. o~ T'd
erroriruc(H) < erroriqein(H) + O (\/ —)

T

bias variance
large small T small
tradeoff
small large T large

e T — number of boosting rounds

e d—VC dimension of weak learner, measures complexity of
classifier

e m — number of training examples
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Expected Adaboost behavior
due to overtfitting

FFFFF
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Adaboost in practice

20 -

15 /\
10-
: Test Error
5 -

CIrror

: \( Training Error
10 100 1000
# rounds
e Boosting often, but not always

e Robust to overfitting
e Test set error decreases even after training error is zero

Why does this seem to contradict the generalization bound?



Intuition

e Even when training error becomes zero, the confidence in the
hypotheses continues to increase

e |Large margin in training (increase in confidence) reduces the
generalization error (rather than causing overfitting)

e Quantify with margin bound, to measure confidence of a
hypothesis: when a vote is taken, the more predictors
agreeing, the more confident you are in your prediction

27



Margin
margin(z,y) = yf(x)
=y ahi()
= > ayhi(x)
Z at — Z a¢

t:he(x)=y t:he(x) Ay

where y is the correct label of instance x, and a; is a normalized version of a; such that
a; > 0 and ) ,a; = 1. The expression Et:ht(x):y a; stands for the weighted fraction of
correct votes, and ) ;. (v)£y @t Stands for the weighted fraction of incorrect votes. Margin
is a number between —1 and 1 as shown in Figure 4.

\ /\

e e
Final H is Final H is
<i incorrect j <i correct j
High confidence Low confidence High confidence

28 * from http://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe notes/0305.pdf


http://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/0305.pdf
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Margins and Adaboost

e AdaBoost increases the margins

e Bigger gamma is better for second term; gamma can be
bigger if margin is bigger

. d
Priest (margin(x, y) < 0) < Pr(marglnh (x,p) < y)+ OE > J
my

Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee.
Boosting the margin: A new explanation for the effectiveness of voting
methods. The Annals of Statistics, 26(5):1651-1686, 1998.

e |t does not depend on 71!

T~

The number of boosting rounds
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General Boosting

“Boosting algorithms as gradient descent”, Mason et al, 2000
Adaboost is only one of many choices, with exponential loss

Other examples and comparison: see “Cost-sensitive boosting
algorithms: Do we really need them?” Nikolaou et al., 2016

Main idea: given some loss L, (implicit) set of hypotheses and
a weak learning algorithm,

* generate hypothesis ht that point in a descent direction

» assign weight relative to how much pointing in descent direction
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Boosting and logistic regression

Logistic regression equivalent to minimizing log loss

(44’

> In(1 + exp(—y;f(x;))) f(x) =’wo+ija:j

i=1 y
Boosting minimizes similar loss function!!

% > exp(—yif(z;)) f(x) =) aths(x)
i=1 ;

Weighted average of weak learners

exp loss

y; = 1 Both smooth approximations
of 0/1 loss!
0/1 loss
0 © Eric Xing @ CMU, 2006-2011 f(ﬂj?,) 33
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Any Boost

Algorithm 1 : AnyBoost

Require : o . _
e An inner product space (&, {,)) containing functions mapping from X to

some set Y.
e A class of base classifiers F C X.
e A differentiable cost functional C': lin (F) = R.
e A weak learner £(F') that accepts F' € lin (F) and returns f € F with a
large value of — (VC(F), f).
Let Fﬂ(ﬂ:) = (.
fort:=0toT do
Let fi41 = L(F}).
if —(VC(F}), ft+1) <0 then
return F;.

Can be thought of as a stepsize
Choose Wiy -

Let Fi4q = Fi + wip fi41
end for
return Fry,.

How does AdaBoost fit into this?

(see “Boosting algorithms as gradient descent”, Mason et al, 2000)
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AdaBoost as AnyBoost

e | oss function is the exponential loss

C(F) = — 3" c(wiF(zy))

i=1

—(VC(F), f) = ——= 3 yif (3)c (F (22)).
i=1

e Such an f corresponds to minimizing a weighted error with
weights

c(yiF(z:))
2?;1 C’(yiF(fE:‘))
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Diversity of the ensemble

 An important property appears to be diversity of the ensemble

e We get to define the hypothesis space: does not have to be
homogenous (e.g., the set of linear classifiers)

e Strategies to promote this include:

» using different types of learners (e.g., naive Bayes, logistic regression
and decision trees)

* pruning learners that are similar

» random learners, which are more likely to be different than strong/
deliberate algorithms which might learn similar predictions
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Exercise: Can boosting be used
for regression?

Algorithm 1 : AnyBoost

Require : o ) _
e An inner product space (X, (, )) containing functions mapping from X to

some set Y.
e A class of base classifiers F C X.
o A differentiable cost functional C': lin (F) = R.
e A weak learner £(F') that accepts F' € lin (F) and returns f € F with a
large value of — (VC(F), f).
Let Fo(z) := 0.
fort:=0to T do
Let fit1 := L(F}).
if —(VC(F:), ft+1) <0 then
return F;.
end if
Choose wyy;.
Let Fiq1 = Fy + weq fra
end for
return Fry,.

If so, whats the loss?
How might this pseudocode change?



