
Ensemble learning



Reminders/Comments

• Initial drafts due today
• Some consternation about how open-ended it is 

• There are no specific requirements, so we will be more lenient. But 
you do have to justify your choices; if you can’t justify it, its likely a 
poor choice

• Sample feedback

• Practice final released

• Review class next Thursday
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How to give feedback

• It should look like an actual conference review:

• Summary of the paper/project

• Some positive feedback about what is done well

• Some constructive criticism about what needs to be improved

• Any other suggestions that can help out the person
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Collections of models

• Have mostly discussed learning one single “best” model
• best linear regression model

• best neural network model

• Can we take advantage of multiple learned models?
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Rationale

• There is no algorithm that is always the most accurate  
︎ 

• Different learners can use different  

• Algorithms (e.g., logistic regression or SVMs)

• Parameters  (e.g., regularization parameters)

• Representations  (e.g., polynomial basis or kernels)

• Training sets  (e.g., two different random subsamples of data)

• The problem: how to combine them
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Ensembles

• Can a set of weak learners create a single strong learner?

• Answer: yes! See seminal paper: “The Strength of Weak 
Learnability” Schapire, 1990

• Why do we care?
• can be easier to specify weak learners e.g., shallow decision trees, 

set of neural networks with smaller number of layers, etc.

• fighting the bias-variance trade-off
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Weak learners

7 *some material from slides by Eric Xing: http://www.cs.cmu.edu/~epxing/Class/10701-11f/Lecture/lecture22.pdf 
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• Weak learners: naive Bayes, logistic regression, decision 
stumps (or shallow decision trees)

logistic regression decision stump



Example of a decision stump
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-1

x2 > 0.48

1

no yes

Decision tree provides more splits;  
decision stump is a one level decision tree



How learn signed prediction?
• Decision-stump outputs sign(<x, w>)

• Logistic regression and linear regression: take learned w, and 
prediction is set to sign(<x,w>)

• Support vector machines: minimize hinge loss
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Green is zero-one loss 
Blue is hinge loss



A side point about SVMs
• Support vector machine: minimize hinge loss while also 

adding goal to maximize the margin
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Bias-variance tradeoff
• We encountered this trade-off for weights in linear regression

• Regularizing introduced bias, but reduced variance

• More generally, when picking functions 
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Definition and basic properties
The MSE assesses the quality of an estimator (i.e., a mathematical function mapping a sample of data to a parameter of
the population from which the data is sampled) or a predictor (i.e., a function mapping arbitrary inputs to a sample of
values of some random variable). Definition of an MSE differs according to whether one is describing an estimator or a
predictor.

Predictor

If  is a vector of  predictions, and  is the vector of observed values corresponding to the inputs to the function
which generated the predictions, then the MSE of the predictor can be estimated by

I.e., the MSE is the mean ( ) of the square of the errors ( ). This is an easily computable quantity for a

particular sample (and hence is sample-dependent).

Estimator

The MSE of an estimator  with respect to an unknown parameter  is defined as

This definition depends on the unknown parameter, and the MSE in this sense is a property of an estimator. Since an
MSE is an expectation, it is not technically a random variable. That being said, the MSE could be a function of
unknown parameters, in which case any estimator of the MSE based on estimates of these parameters would be a
function of the data and thus a random variable.

The MSE can be written as the sum of the variance of the estimator and the squared bias of the estimator, providing a
useful way to calculate the MSE and implying that in the case of unbiased estimators, the MSE and variance are
equivalent. [2]

Proof of variance and bias relationship

Var(f̂) + Bias(f̂ , f)2

How might you specify bias between functions?



Voting (Ensemble methods)
• Instead of learning a single (weak) classifier, learn many 

weak classifiers that are good at different parts of the 
input space 

• Output class: (Weighted) vote of each classifier 
︎ Classifiers that are most “sure” will vote with more conviction  
︎ Classifiers will be most “sure” about a particular part of the 
space. ︎ On average, do better than single classifier! 
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2

Why boost weak learners?
Goal: Automatically categorize type of call requested 

(Collect, Calling card, Person-to-person, etc.)

z Easy to find “rules of thumb” that are “often” correct.
E.g. If ‘card’ occurs in utterance, then predict ‘calling card’

z Hard to find single highly accurate prediction rule.

3© Eric Xing @ CMU, 2006-2011

Voting  (Ensemble Methods)
z Instead of learning a single (weak) classifier, learn many weak 

classifiers that are good at different parts of the input space

z Output class: (Weighted) vote of each classifier
z Classifiers that are most “sure” will vote with more conviction

z Classifiers will be most “sure” about a particular part of the space

z On average, do better than single classifier!

H: X → Y (-1,1)
h1(X) h2(X)

1 -1

? ?

? ?

1 -1

h1(X) h2(X)

H(X) = sign(∑αt ht(X))
t

weights

H(X) = h1(X)+h2(X)

4© Eric Xing @ CMU, 2006-2011



Voting (Ensemble methods)

• Instead of learning a single (weak) classifier, learn many 
weak classifiers that are good at different parts of the 
input space 

• Output class: (Weighted) vote of each classifier 
︎ Classifiers that are most “sure” will vote with more conviction  
︎ Classifiers will be most “sure” about a particular part of the 
space ︎ On average, do better than single classifier! 

• But how do you  
︎ force classifiers ht to learn about different parts of the input 
space? ︎ weight the votes of different classifiers? αt 
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Boosting [Schapire 89]

• Idea: given a weak learner, run it multiple times on 
(reweighted) training data, then let learned classifiers vote 

• On each iteration t:
• weight each training example by how incorrectly it was classified

• Learn a weak hypothesis – ht

• Obtain a strength for this hypothesis – αt 

• Final classifier:  

15

4

Boosting [Schapire’89]
z Idea: given a weak learner, run it multiple times on (reweighted) 

training data, then let learned classifiers vote

z On each iteration t: 
z weight each training example by how incorrectly it was classified 
z Learn a weak hypothesis – ht

z A strength for this hypothesis – αt

z Final classifier: H(X) = sign(∑αt ht(X))

z Practically useful, and theoretically interesting
z Important issues:

z what is the criterion that we are optimizing? (measure of loss)
z we would like to estimate each new component classifier in the same manner 

(modularity)
7© Eric Xing @ CMU, 2006-2011

Combination of classifiers
z Suppose we have a family of component classifiers 

(generating ±1 labels) such as decision stumps:(g g ) p

where θ = {k,w,b}

z Each decision stump pays 

( )bwxxh k += sign);( θ

attention to only a single 
component of the 
input vector

8© Eric Xing @ CMU, 2006-2011



Combination of classifiers
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Combination of classifiers
z Suppose we have a family of component classifiers 

(generating ±1 labels) such as decision stumps:(g g ) p
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z Each decision stump pays 

( )bwxxh k += sign);( θ

attention to only a single 
component of the 
input vector
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-1

x2 > 0.48

1

no yes

w = 1, k = 2, b = 0.48



Combination of classifiers
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Combination of classifiers con’d
z We’d like to combine the simple classifiers additively so that 

the final classifier is the sign ofg

where the “votes” {αi} emphasize component classifiers that 
make more reliable predictions than others

I t t i

);();()(ˆ mmhhh θαθα xxx ++= K11

z Important issues:
z what is the criterion that we are optimizing? (measure of loss)
z we would like to estimate each new component classifier in the same manner 

(modularity)

9© Eric Xing @ CMU, 2006-2011

AdaBoost
z Input:

z N examples SN = {(x1,y1),…, (xN,yN)}p N {( 1 y1) ( N yN)}

z a weak base learner h = h(x,θ)

z Initialize: equal example weights wi = 1/N for all i = 1..N

z Iterate for t = 1…T:
1. train base learner according to weighted example set (wt ,x) and obtain hypothesis 

ht = h(x,θt)
2. compute hypothesis error εt

3 compute hypothesis weight α3. compute hypothesis weight αt

4. update example weights for next iteration wt+1

z Output: final hypothesis as a linear combination of ht

10© Eric Xing @ CMU, 2006-2011

• On each iteration t:
• weight each training example by how incorrectly it was classified

• Learn a weak hypothesis – ht

• Obtain a strength for this hypothesis – αt 

Recall



Boosting example with   
decision stumps
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AdaBoost
z At the kth iteration we find (any) classifier h(x; θk*) for which 

the weighted classification error:g

is better than change.
z This is meant to be "easy" --- weak classifier

z Determine how many “votes” to assign to the new component 
classifier:
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classifier:

z stronger classifier gets more votes

z Update the weights on the training examples:

( )kkk εε /)(log. −= 150α

{ });(exp kiki
k
i

k
i hayWW θx−= −1

11© Eric Xing @ CMU, 2006-2011

Boosting Example (Decision 
Stumps)

12© Eric Xing @ CMU, 2006-2011↵1 = 0.42 ↵2 = 0.65 ↵3 = 0.92

d = 2 
n = 10



Boosting example with   
decision stumps
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AdaBoost
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Combination of classifiers con’d
z We’d like to combine the simple classifiers additively so that 

the final classifier is the sign ofg

where the “votes” {αi} emphasize component classifiers that 
make more reliable predictions than others

I t t i

);();()(ˆ mmhhh θαθα xxx ++= K11

z Important issues:
z what is the criterion that we are optimizing? (measure of loss)
z we would like to estimate each new component classifier in the same manner 

(modularity)

9© Eric Xing @ CMU, 2006-2011

AdaBoost
z Input:

z N examples SN = {(x1,y1),…, (xN,yN)}p N {( 1 y1) ( N yN)}

z a weak base learner h = h(x,θ)

z Initialize: equal example weights wi = 1/N for all i = 1..N
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Adaboost
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AdaBoost
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Boosting Example (Decision 
Stumps)

12© Eric Xing @ CMU, 2006-2011

c

W

k
i = exp(�yif(xi))

epsilon small,  
(1-epsilon)/epsilon is big 
epsilon = 0.5 (random),  
alpha = 0

f(·) =
kX

j=1

↵kh(· ; ✓k)



Base learners

• Weak learners used in practice:
• Decision stumps

• Decision trees (e.g. C4.5 by Quinlan 1996)

• Multi-layer neural networks

• Radial basis function networks

• Can base learners operate on weighted examples?
• In many cases they can be modified to accept weights along with the 

examples

• In general, we can sample the examples (with replacement) 
according to the distribution defined by the weights
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Exercise
• How can we modify logistic regression with kernel features to 

use different weights for each example?

• Can we modify naive Bayes to use different weights for each 
example? How might we go about checking this?
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Generalization error bounds for 
Adaboost

24

13

[Schapire, 1989]

Boosting results – Digit 
recognition

Test Error

Training Error

z Boosting often, 
z Robust to overfitting
z Test set error decreases even after training error is zero

but not always

25© Eric Xing @ CMU, 2006-2011

Generalization Error Bounds
[Freund & Schapire’95]

T smalllarge small

T largesmall large

tradeoff

bias variance

z T – number of boosting rounds
z d – VC dimension of weak learner, measures complexity of 

classifier 
z m – number of training examples

26© Eric Xing @ CMU, 2006-2011



Expected Adaboost behavior 
due to overfitting

25 Figure 1: Expected generalization error due to overfitting.

Figure 2: Error curves for boosting C4.5 on the letter dataset. (Robert E. Schapire, ”The
boosting approach to machine learning: An overview”)

Figure 3: Cumulative distribution of margins for boosting C4.5 on the letter dataset.
(Robert E. Schapire, ”The boosting approach to machine learning: An overview”)
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Adaboost in practice

26

13

[Schapire, 1989]

Boosting results – Digit 
recognition

Test Error

Training Error

z Boosting often, 
z Robust to overfitting
z Test set error decreases even after training error is zero

but not always

25© Eric Xing @ CMU, 2006-2011

Generalization Error Bounds
[Freund & Schapire’95]

T smalllarge small

T largesmall large

tradeoff

bias variance

z T – number of boosting rounds
z d – VC dimension of weak learner, measures complexity of 

classifier 
z m – number of training examples

26© Eric Xing @ CMU, 2006-2011

Why does this seem to contradict the generalization bound?



Intuition

• Even when training error becomes zero, the confidence in the 
hypotheses continues to increase

• Large margin in training (increase in confidence) reduces the 
generalization error (rather than causing overfitting)

• Quantify with margin bound, to measure confidence of a 
hypothesis: when a vote is taken, the more predictors 
agreeing, the more confident you are in your prediction
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Margin
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Figure 3: The probability density of letter margin.

3 Generalization Error Based on Margin

3.1 Concept of Margin

We introduce the concept of margin to measure the confidence of a hypothesis quantitatively.
Mathematically, the margin (of a specific example) is defined as

margin(x, y) = yf(x)

= y
∑

t

atht(x)

=
∑

t

atyht(x)

=
∑

t:ht(x)=y

at −
∑

t:ht(x)̸=y

at

where y is the correct label of instance x, and at is a normalized version of αt such that
αt ≥ 0 and

∑
t at = 1. The expression

∑
t:ht(x)=y at stands for the weighted fraction of

correct votes, and
∑

t:ht(x)̸=y at stands for the weighted fraction of incorrect votes. Margin
is a number between −1 and 1 as shown in Figure 4.

!" #"$
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Figure 4: The definition of margin.

3.2 Margin and Generalization Error of AdaBoost

Empirically, AdaBoost pushes examples of low margin to the right end of the segment in
Figure 4. In order to analyze what is going on, we do a two-part analysis:

4

* from http://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/0305.pdf

http://www.cs.princeton.edu/courses/archive/spr08/cos511/scribe_notes/0305.pdf


Margins and Adaboost
• AdaBoost increases the margins

• Bigger gamma is better for second term; gamma can be 
bigger if margin is bigger

29

The number of boosting rounds

16

A Margin Bound

z For any γ, the generalization error is less than:

Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee Sun Lee. 
Boosting the margin: A new explanation for the effectiveness of voting 

methods.  The Annals of Statistics, 26(5):1651-1686, 1998. 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≤ 2γ

γ
m
dO,yh )(marginPr x

z It does not depend on T!!!

31© Eric Xing @ CMU, 2006-2011

Logistic regression assumes:

Boosting and Logistic 
Regression

And tries to maximize data likelihood:
iid

Equivalent to minimizing log loss

32© Eric Xing @ CMU, 2006-2011

Prtest(margin(x, y)  0) <



General Boosting

• “Boosting algorithms as gradient descent”, Mason et al, 2000

• Adaboost is only one of many choices, with exponential loss

• Other examples and comparison: see “Cost-sensitive boosting 
algorithms: Do we really need them?” Nikolaou et al., 2016

• Main idea: given some loss L, (implicit) set of hypotheses and 
a weak learning algorithm, 
• generate hypothesis ht that point in a descent direction 

• assign weight relative to how much pointing in descent direction

30



Boosting and logistic regression

31
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Logistic regression equivalent to minimizing log loss

Boosting and Logistic 
Regression

Boosting minimizes similar loss function!!

Weighted average of weak learners
log loss

Both smooth approximations 
of 0/1 loss!

1

0

0/1 loss

exp loss
log loss

33© Eric Xing @ CMU, 2006-2011

Logistic regression:
z Minimize log loss

Boosting:
z Minimize exp loss

Boosting and Logistic 
Regression

z Minimize log loss

z Define 

z Minimize exp loss

z Define 

where xj predefined 
features
(linear classifier)

z Jointly optimize over all 
weights w0, w1, w2…

where ht(x) defined dynamically 
to fit data
(not a linear classifier)

z Weights αt learned per 
iteration t incrementally 34© Eric Xing @ CMU, 2006-2011



Any Boost
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514 L. Mason, J Baxter. P. Bartlett and M Frean 

these things will be made when we apply the algorithm to more concrete situations. 
Note also that the algorithm terminates when - (\lC(Ft ), It+!) 0, i.e when the 
weak learner C returns a base hypothesis It+l which no longer points in the downhill 
direction of the cost function C(F). Thus, the algorithm terminates when, to first 
order, a step in function space in the direction of the base hypothesis returned by 
C would increase the cost. 

Algorithm 1 : Any Boost 

Require: 
• An inner product space (X, (, )) containing functions mapping from X to 

some set Y. 
• A class of base classifiers F X. 
• A differentiable cost functional C: lin (F) --+ III 
• A weak learner C(F) that accepts F E lin (F) and returns I E F with a 

large value of - (\lC(F), f). 
Let Fo(x) := O. 
for t := 0 to T do 

Let It+! := C(Ft ). 
if - (\lC(Ft ), It+!) 0 then 

return Ft. 
end if 
Choose Wt+!. 
Let Ft+l := Ft + Wt+I!t+1 

end for 
return FT+I. 

3 A gradient descent view of voting methods 

We now restrict our attention to base hypotheses I E F mapping to Y = {± I}, 
and the inner product 

(2) 

for all F, G E lin (F), where S = {Xl, yt), . . . , (Xn, Yn)} is a set of training examples 
generated according to some unknown distribution 1) on X x Y. Our aim now is to 
find F E lin (F) such that Pr(x,y)"""Vsgn (F(x)) -=f. Y is minimal, where sgn (F(x)) = 
-1 if F (x) < 0 and sgn (F (x)) = 1 otherwise. In other words, sgn F should minimize 
the misclassification probability. 

The margin of F : X --+ R on example (x,y) is defined as yF(x). Consider margin 
cost-Iunctionals defined by 

1 m 
C(F) := - L C(YiF(Xi)) 

m i=l 

where c: R --+ R is any differentiable real-valued function of the margin. With these 
definitions, a quick calculation shows: 

1 m 
- (\lC(F), I) = -2 LYd(Xi)C'(YiF(Xi)). 

m i=l 

Since positive margins correspond to examples correctly labelled by sgn F and neg-
ative margins to incorrectly labelled examples, any sensible cost function of the 

How does AdaBoost fit into this?  
(see “Boosting algorithms as gradient descent”, Mason et al, 2000)

Can be thought of as a stepsize



AdaBoost as AnyBoost

• Loss function is the exponential loss

• Such an f corresponds to minimizing a weighted error with 
weights
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-1 if F (x) < 0 and sgn (F (x)) = 1 otherwise. In other words, sgn F should minimize 
the misclassification probability. 

The margin of F : X --+ R on example (x,y) is defined as yF(x). Consider margin 
cost-Iunctionals defined by 

1 m 
C(F) := - L C(YiF(Xi)) 

m i=l 

where c: R --+ R is any differentiable real-valued function of the margin. With these 
definitions, a quick calculation shows: 

1 m 
- (\lC(F), I) = -2 LYd(Xi)C'(YiF(Xi)). 

m i=l 

Since positive margins correspond to examples correctly labelled by sgn F and neg-
ative margins to incorrectly labelled examples, any sensible cost function of the 
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Table 1: Existing voting methods viewed as AnyBoost on margin cost functions. 
Algorithm Cost function Step size 
AdaBoost [9] e-yF(x) Line search 
ARC-X4 [2] (1 - yF(x))" 1ft 
ConfidenceBoost [19] e yF(x) Line search 
LogitBoost [12] In(l + e-yl«X») Newton-Raphson 

margin will be monotonically decreasing. Hence -C'(YiF(Xi)) will always be posi-
tive. Dividing through by - 2:::1 C'(YiF(Xi)), we see that finding an I maximizing 
- ('\1 C (F), f) is equivalent to finding an I minimizing the weighted error 

L D(i) where for i = 1, ... ,m. 
i: f(Xi):f;Yi 

Many of the most successful voting methods are, for the appropriate choice of margin 
cost function c and step-size, specific cases of the AnyBoost algorithm (see Table 3). 
A more detailed analysis can be found in the full version of this paper [15]. 

4 Convergence of Any Boost 

In this section we provide convergence results for the AnyBoost algorithm, under 
quite weak conditions on the cost functional C. The prescriptions given for the 
step-sizes Wt in these results are for convergence guarantees only: in practice they 
will almost always be smaller than necessary, hence fixed small steps or some form 
of line search should be used. 
The following theorem (proof omitted, see [15]) supplies a specific step-size for 
AnyBoost and characterizes the limiting behaviour with this step-size. 
Theorem 1. Let C: lin (F) -7 be any lower bounded, Lipschitz differentiable 
cost functional (that is, there exists L > 0 such that II'\1C(F)- '\1C(F')1I :::; LIIF-F'II 
lor all F, F' E lin (F)). Let Fo, F l , ... be the sequence 01 combined hypotheses 
generated by the AnyBoost algorithm, using step-sizes 

('\1C(Ft ), It+!) 
Wt+1 := - Lll/t+!112 . (3) 

Then AnyBoost either halts on round T with - ('\1C(FT ), IT+1) :::; 0, or C(Ft) 
converges to some finite value C*, in which case limt-+oo ('\1C(Ft ), It+l) = O. 

The next theorem (proof omitted, see [15]) shows that if the weak learner can 
always find the best weak hypothesis It E F on each round of AnyBoost, and if 
the cost functional C is convex, then any accumulation point F of the sequence 
(Ft) generated by AnyBoost with the step sizes (3) is a global minimum of the 
cost. For ease of exposition, we have assumed that rather than terminating when 
- ('\1C(FT), h+l) :::; 0, AnyBoost simply continues to return FT for all subsequent 
time steps t. 
Theorem 2. Let C: lin (F) -7 be a convex cost functional with the properties 
in Theorem 1, and let (Ft) be the sequence 01 combined hypotheses generated by 
the AnyBoost algorithm with step sizes given by (3). Assume that the weak hypoth-
esis class F is negation closed (f E F ===} - I E F) and that on each round 



Diversity of the ensemble

• An important property appears to be diversity of the ensemble

• We get to define the hypothesis space: does not have to be 
homogenous (e.g., the set of linear classifiers)

• Strategies to promote this include:
• using different types of learners (e.g., naive Bayes, logistic regression 

and decision trees)

• pruning learners that are similar

• random learners, which are more likely to be different than strong/
deliberate algorithms which might learn similar predictions
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Exercise: Can boosting be used 
for regression?
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these things will be made when we apply the algorithm to more concrete situations. 
Note also that the algorithm terminates when - (\lC(Ft ), It+!) 0, i.e when the 
weak learner C returns a base hypothesis It+l which no longer points in the downhill 
direction of the cost function C(F). Thus, the algorithm terminates when, to first 
order, a step in function space in the direction of the base hypothesis returned by 
C would increase the cost. 

Algorithm 1 : Any Boost 

Require: 
• An inner product space (X, (, )) containing functions mapping from X to 

some set Y. 
• A class of base classifiers F X. 
• A differentiable cost functional C: lin (F) --+ III 
• A weak learner C(F) that accepts F E lin (F) and returns I E F with a 

large value of - (\lC(F), f). 
Let Fo(x) := O. 
for t := 0 to T do 

Let It+! := C(Ft ). 
if - (\lC(Ft ), It+!) 0 then 

return Ft. 
end if 
Choose Wt+!. 
Let Ft+l := Ft + Wt+I!t+1 

end for 
return FT+I. 

3 A gradient descent view of voting methods 

We now restrict our attention to base hypotheses I E F mapping to Y = {± I}, 
and the inner product 

(2) 

for all F, G E lin (F), where S = {Xl, yt), . . . , (Xn, Yn)} is a set of training examples 
generated according to some unknown distribution 1) on X x Y. Our aim now is to 
find F E lin (F) such that Pr(x,y)"""Vsgn (F(x)) -=f. Y is minimal, where sgn (F(x)) = 
-1 if F (x) < 0 and sgn (F (x)) = 1 otherwise. In other words, sgn F should minimize 
the misclassification probability. 

The margin of F : X --+ R on example (x,y) is defined as yF(x). Consider margin 
cost-Iunctionals defined by 

1 m 
C(F) := - L C(YiF(Xi)) 

m i=l 

where c: R --+ R is any differentiable real-valued function of the margin. With these 
definitions, a quick calculation shows: 

1 m 
- (\lC(F), I) = -2 LYd(Xi)C'(YiF(Xi)). 

m i=l 

Since positive margins correspond to examples correctly labelled by sgn F and neg-
ative margins to incorrectly labelled examples, any sensible cost function of the 

If so, whats the loss? 
How might this pseudocode change?


