
Hidden variable 
models



Comments

• Mini-project sign-up google doc

• No coding on final (just fundamentals) 
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Summary of last time

• Discussed more about dimensionality reduction
• and how can use auto-encoders or factorization

• Discussed generalization to losses and priors
• maximum likelihood and MAP again

• Discussed matrix completion
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Matrix completion

• Learned embeddings for users and movies into a common 
space
• i.e., h_i and d_j are both k-dimensional representations

• we can actually look at similarities between users by comparing their 
embedding vectors (or even similarity between a user and a movie!)

• Why is this useful? 
• allows prediction (completion) of unknown elements in the matrix

• its a way to learn metrics
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Embeddings with co-occurence

• Embed complex items into a shared (Euclidean) space based 
on their relationships to other complex items

• Examples: 
• word2vec

• users and movies

• gene sequences

5



Consider word features

• Imagine want to predict whether a sentence is positive or 
negative (say with logistic regression)

• How do we encode words?

• One basic option: a one-hot encoding. If there are 10000 
words, the ith word has a 1 in the ith location of a 10000 
length vector, and zero everywhere else.

• This is a common way to deal with categorical variables, but 
with 10000 words this can get big!

• Can we get a more compact representation of a word?
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Co-occurence matrix example: 
word2vec

• X is count of words (rows) and context (columns), where for 
word i the count is the number of times a context word j is 
seen within 2 words (say) of word i

• Each word is a one-hot encoding; if there are 10000 words, 
each row corresponds to 1 word, and X is 10000x10000 
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How obtain embeddings?

• Words i and s that have similar context counts should be 
embedded similarly

• Factorize co-occurrence matrix 
• or some measure of how items are related, e.g. rank or probability

• X = H D —> What is H_{i:}, and what is D_{:j}? Which should 
we use? 

• Take complex (non-numerical) data like words, and extract a 
numerical vector of k features
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How might you use an auto-
encoder?

• Recall equivalence between PCA and linear auto-encoders

• Can factorize X = HD to get embeddings

• Can learn auto-encoder X B A, where XB is embedding 
• can we get the embedding for the context words?

• What is the input, if want to think of this as samples?

• For a new word, how do I get the embedding?
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Does it have to be co-occurrence?

• First layer of a neural network could generate an embedding, 
even if just learning to predict accurately
• say want to predict if a blog post is about politics

• Input could be one-hot encoding, XB produces embedding
• i.e., the representation of the word

• Depending on the prediction problem, supervised approach 
may not result in interesting embeddings
• why not? 
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Thought exercise

• Assume someone gave you a count matrix for words

• How might you learn a sparse embedding?

• Why might this be useful?
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Hidden variables

• Different from missing variables, in the sense that for missing 
information we *could* have observed the missing data
• e.g., if the person had just filled in the box on the form

• Hidden variables are never observed; rather they are useful 
for model description
• e.g., hidden, latent representation

• e.g., hidden state that drives dynamics

• Hidden variables make specification of distribution simpler
• p(x ) = \int_h p(x | h) p(h)

• p(x | h) can be much simpler to specify
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Intuitive example

• Underlying “state” 
influencing what we 
observe; partial 
observability makes 
what we observe 
difficult to interpret

• Imagine we can 
never see that a 
kitten is present; but 
it clearly helps to 
explain the data
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Hidden variable models

• Probabilistic PCA and factor analysis
• common in psychology

• Mixture models

• Hidden Markov Models
• commonly used for NLP and modeling dynamical systems
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Hidden Markov Model
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S1 S2 S3

X1 X2 X3

…

The observations are x1, x2, x3 
Temporally related 
Dynamics driven by hidden state



Gaussian mixture model
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Gaussian Mixture Model

A D dimensional Gaussian distribution for a continuous variable x is

p(x|m,S) =
1
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where m is the mean and S is the covariance matrix. A mixture of Gaussians is
then

p (x) =

H
X

i=1

p(x|mi,Si)p(i)

where p(i) is the mixture weight for component i.



Example of 2-d data
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Mixture of 3 Gaussians
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Example: Mixture of 3 Gaussians
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Probabilistic PCA

• In PCA, we learned p(x | D, h)
• What were the assumptions on p(x | D, h)?

• For Probabilistic PCA, we learn p(x | D)

• Given some prior p(h), we have 
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p(x|D) =

Z

H
p(x|D,h)p(h)dh



Hidden variables complicate the 
solution

• When take log-likelihood, have log of a sum
• But logs of products is where we get wins

• For a mixture model, log sum_{h=1}^H p(x | h) p(h)

• p(x|h) is Gaussian, but log does not come inside the sum

• Have a complicated objective; could use gradient descent, but 
more complicated to compute the gradient
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Closed-form solutions
• For some hidden variable models, have a closed form solution

• probabilistic PCA and factor analysis

• For others, no closed form solution, still want to maximize 
likelihood of the data
• e.g., mixture models
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Gaussian Mixture Model

A D dimensional Gaussian distribution for a continuous variable x is
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where p(i) is the mixture weight for component i.
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Closed-form solutions

• For some hidden variable models, have a closed form solution
• probabilistic PCA

• factor analysis

• Probabilistic PCA solution:
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Expectation-maximization
• We can use an expectation-maximization approach instead to 

incrementally compute the solution

• Similar to alternating descent approach taken for factorizations

• Enables logarithm and sum over hidden variables to be 
swapped, by minimizing instead a lower bound 
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log p(✓|x) � E[log p(x,h|✓)� log p(h)]

log p(x,h|✓) = log p(x|h, ✓) + log p(h|✓)

If expectation w.r.t. p(h|x, ✓) then equal, rather than �



Expectation-maximization
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Gaussian Mixture Model
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where p(i) is the mixture weight for component i.

log p(x|h = i) simple

log p(x,h|✓) = log p(x|h, ✓) + log p(h|✓)

1. ApproximateIf expectation w.r.t. p(h|x, ✓) then equal, rather than �

2. Optimize theta for

e.g. mixture model



EM algorithm for mixtures

• Procedure: initialize parameters to some initial guess/random

• Alternate between:
• E-step: fix parameter, approximate p(h | x, theta)

• M-step: fix p(h | x, theta) obtaining maximum likelihood parameters 
for means, covariances and weights on each distribution

• Each cycle guaranteed not to decrease likelihood, converge to 
a local minimum
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Simulation of EM for mixtures
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Simulation of EM for mixtures
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Simulation of EM for mixtures
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