Hidden variable models

Comments

- Mini-project sign-up google doc
- No coding on final (just fundamentals)

Summary of last time

- Discussed more about dimensionality reduction
- and how can use auto-encoders or factorization
- Discussed generalization to losses and priors
- maximum likelihood and MAP again
- Discussed matrix completion

Matrix completion

- Learned embeddings for users and movies into a common space
- i.e., h_i and d_j are both k-dimensional representations
- we can actually look at similarities between users by comparing their embedding vectors (or even similarity between a user and a movie!)
- Why is this useful?
- allows prediction (completion) of unknown elements in the matrix
- its a way to learn metrics

Embeddings with co-occurence

- Embed complex items into a shared (Euclidean) space based on their relationships to other complex items
- Examples:
- word2vec
- users and movies
- gene sequences

Consider word features

- Imagine want to predict whether a sentence is positive or negative (say with logistic regression)
- How do we encode words?
- One basic option: a one-hot encoding. If there are 10000 words, the ith word has a 1 in the ith location of a 10000 length vector, and zero everywhere else.
- This is a common way to deal with categorical variables, but with 10000 words this can get big!
- Can we get a more compact representation of a word?

Co-occurence matrix example: word2vec

- X is count of words (rows) and context (columns), where for word i the count is the number of times a context word j is seen within 2 words (say) of word i
- Each word is a one-hot encoding; if there are 10000 words, each row corresponds to 1 word, and X is 10000×10000
- I like deep learning.
- I like NLP.
- I enjoy flying.

counts	l	like	enjoy	deep	learning	NLP	flying	.
I	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
.	0	0	0	0	1	1	1	0

How obtain embeddings?

- Words i and s that have similar context counts should be embedded similarly
- Factorize co-occurrence matrix
- or some measure of how items are related, e.g. rank or probability
- $X=$ H D \rightarrow What is H_\{i:\}, and what is D_\{:j\}? Which should we use?
- Take complex (non-numerical) data like words, and extract a numerical vector of k features

How might you use an autoencoder?

- Recall equivalence between PCA and linear auto-encoders
- Can factorize $\mathrm{X}=\mathrm{HD}$ to get embeddings
- Can learn auto-encoder X B A, where XB is embedding
- can we get the embedding for the context words?
- What is the input, if want to think of this as samples?
- For a new word, how do I get the embedding?

Does it have to be co-occurrence?

- First layer of a neural network could generate an embedding, even if just learning to predict accurately
- say want to predict if a blog post is about politics
- Input could be one-hot encoding, XB produces embedding
- i.e., the representation of the word
- Depending on the prediction problem, supervised approach may not result in interesting embeddings
- why not?

Thought exercise

- Assume someone gave you a count matrix for words
- How might you learn a sparse embedding?
- Why might this be useful?

Hidden variables

- Different from missing variables, in the sense that for missing information we *could* have observed the missing data
- e.g., if the person had just filled in the box on the form
- Hidden variables are never observed; rather they are useful for model description
- e.g., hidden, latent representation
- e.g., hidden state that drives dynamics
- Hidden variables make specification of distribution simpler
- $p(x)=$ lint_h $p(x \mid h) p(h)$
- $p(x \mid h)$ can be much simpler to specify

Intuitive example

- Underlying "state" influencing what we observe; partial observability makes what we observe difficult to interpret
- Imagine we can never see that a kitten is present; but it clearly helps to explain the data

Hidden variable models

- Probabilistic PCA and factor analysis
- common in psychology
- Mixture models
- Hidden Markov Models
- commonly used for NLP and modeling dynamical systems

Hidden Markov Model

The observations are $\times 1, x 2, x 3$
Temporally related
Dynamics driven by hidden state

Gaussian mixture model

A D dimensional Gaussian distribution for a continuous variable \mathbf{x} is

$$
p(\mathbf{x} \mid \mathbf{m}, \mathbf{S})=\frac{1}{\sqrt{\operatorname{det}(2 \pi \mathbf{S})}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mathbf{m})^{\top} \mathbf{S}^{-1}(\mathbf{x}-\mathbf{m})\right\}
$$

where \mathbf{m} is the mean and \mathbf{S} is the covariance matrix. A mixture of Gaussians is then

$$
p(\mathbf{x})=\sum_{i=1}^{H} p\left(\mathbf{x} \mid \mathbf{m}_{i}, \mathbf{S}_{i}\right) p(i)
$$

where $p(i)$ is the mixture weight for component i.

Example of 2-d data

Mixture of 3 Gaussians

3 contours

Surface plot

Probabilistic PCA

- In PCA, we learned $p(x \mid D, h)$
- What were the assumptions on $\mathrm{p}(\mathrm{x} \mid \mathrm{D}, \mathrm{h})$?
- For Probabilistic PCA, we learn p(x I D)
- Given some prior $p(h)$, we have

$$
p(\mathbf{x} \mid \mathbf{D})=\int_{\mathcal{H}} p(\mathbf{x} \mid \mathbf{D}, \mathbf{h}) p(\mathbf{h}) d \mathbf{h}
$$

Hidden variables complicate the solution

- When take log-likelihood, have log of a sum
- But logs of products is where we get wins
- For a mixture model, log sum_\{h=1\}^H p(x I h) p(h)
- $\mathrm{p}(\mathrm{xlh})$ is Gaussian, but log does not come inside the sum
- Have a complicated objective; could use gradient descent, but more complicated to compute the gradient

Closed-form solutions

- For some hidden variable models, have a closed form solution
- probabilistic PCA and factor analysis
- For others, no closed form solution, still want to maximize likelihood of the data
- e.g., mixture models

$$
\begin{aligned}
& p(\mathbf{x} \mid \mathbf{m}, \mathbf{S})=\frac{1}{\sqrt{\operatorname{det}(2 \pi \mathbf{S})}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mathbf{m})^{\top} \mathbf{S}^{-1}(\mathbf{x}-\mathbf{m})\right\} \\
& p(\mathbf{x})=\sum_{i=1}^{H} p\left(\mathbf{x} \mid \mathbf{m}_{i}, \mathbf{S}_{i}\right) p(i) \\
& \log p(\mathbf{x}) ?
\end{aligned}
$$

Closed-form solutions

- For some hidden variable models, have a closed form solution
- probabilistic PCA
- factor analysis
- Probabilistic PCA solution:

$$
\begin{aligned}
\mathbf{X} & =\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top} \\
\mathbf{D} & =\mathbf{U}_{k}\left(\boldsymbol{\Sigma}_{k}^{2}-\sigma^{2} \mathbf{I}_{k}\right)^{1 / 2} \\
\sigma^{2} & =\frac{1}{d-k} \sum_{i=k+1}^{d} \sigma_{i}^{2}
\end{aligned}
$$

Expectation-maximization

- We can use an expectation-maximization approach instead to incrementally compute the solution
- Similar to alternating descent approach taken for factorizations
- Enables logarithm and sum over hidden variables to be swapped, by minimizing instead a lower bound

$$
\begin{aligned}
\log p(\theta \mid \mathbf{x}) & \geq \mathbb{E}[\log p(\mathbf{x}, \mathbf{h} \mid \theta) \\
\log p(\mathbf{x}, \mathbf{h} \mid \theta) & =\log p(\mathbf{x} \mid \mathbf{h}, \theta)+\log p(\mathbf{h} \mid \theta)
\end{aligned}
$$

If expectation w.r.t. $p(\mathbf{h} \mid \mathbf{x}, \theta)$ then equal, rather than \geq

Expectation-maximization

1. Approximate $p(\mathbf{h} \mid \mathbf{x}, \theta)$
2. Optimize theta for

$$
\log p(\mathbf{x}, \mathbf{h} \mid \theta)=\log p(\mathbf{x} \mid \mathbf{h}, \theta)+\log p(\mathbf{h} \mid \theta)
$$

e.g. mixture model

$$
\begin{array}{cr}
p(\mathbf{x} \mid \mathbf{m}, \mathbf{S})=\frac{1}{\sqrt{\operatorname{det}(2 \pi \mathbf{S})}} \exp \left\{-\frac{1}{2}(\mathbf{x}-\mathbf{m})^{\top} \mathbf{S}^{-1}(\mathbf{x}-\mathbf{m})\right\} \\
p(\mathbf{x})=\sum_{i=1}^{H} p\left(\mathbf{x} \mid \mathbf{m}_{i}, \mathbf{S}_{i}\right) p(i) & \log p(\mathbf{x} \mid h=i) \text { simple }
\end{array}
$$

EM algorithm for mixtures

- Procedure: initialize parameters to some initial guess/random
- Alternate between:
- E-step: fix parameter, approximate $\mathrm{p}(\mathrm{h} \mid \mathrm{x}$, theta)
- M-step: fix p(h|x, theta) obtaining maximum likelihood parameters for means, covariances and weights on each distribution
- Each cycle guaranteed not to decrease likelihood, converge to a local minimum

Simulation of EM for mixtures

Simulation of EM for mixtures

Simulation of EM for mixtures

