d

Probability Theory Review

CMPUT 466/551

Martha White

Fall, 2017

Reminders

- Assignment 1 is due on September 28
- Thought questions 1 are due on September 21
- Chapters 1-4, about 40 pages
- If you are printing, don't print all the notes yet
- Office hours
- Martha: 3-5 p.m. on Tuesday (ATH 3-05)
- Labs: W 5-8 p.m. and F 2-5 p.m.
- Start thinking about datasets for your mini-project
- I do not expect you to know formulas, like pdfs
- I will use a combination of slides and writing on the board (where you should take notes)

BACKGROUND FOR COURSE

- Need to know calculus, mostly derivatives
- Will almost never integrate
- I will teach you multivariate calculus
- Need to know linear algebra
- I assume you know about vector, matrices and dot products
- I will teach you more advanced topics, like singular value decompositions
- Need to have learned a bit about probability
- Concerns for final: will be testing only fundamentals, not intended to be difficult to finely separate students

PROBABILITY THEORY IS THE SCIENCE OF PREDICTIONS*

- The goal of science is to discover theories that can be used to predict how natural processes evolve or explain natural phenomenon, based on observed phenomenon.
- The goal of probability theory is to provide the foundation to build theories (= models) that can be used to reason about the outcomes of events, future or past, based on observations.
- prediction of the unknown which may depend on what is observed and whose nature is probabilistic

(MEASURABLE) SPACE OF OUTCOMES AND EVENTS

$\Omega=$ sample space, all outcomes of the experiment
$\mathcal{F}=$ cvent space, set of subsets of Ω
Ω and \mathcal{F} must be non-empty
\mathcal{F} has been changed to \mathcal{E} in the notes
If the following conditions hold:

1. $A \in \mathcal{F} \Rightarrow A^{c} \in \mathcal{F}$
2. $A_{1}, A_{2}, \ldots \in \mathcal{F} \quad \Rightarrow \quad \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}$
\mathcal{F} is an event space
Note: terminology sigma field sounds technical, but it just means this event space

$$
(\Omega, \mathcal{F})=\text { a measurable space }
$$

Why is this the Definition?

Intuitively,

1. A collection of outcomes is an event (e.g., either a 1 or 6 was rolled)
2. If we can measure two events separately, then their union should also be a measurable event
3. If we can measure an event, then we should be able to measure that that event did not occur (the complement)
$\Omega=$ sample space, all outcomes of the experiment
$\mathcal{F}=$ event space, set of subsets of Ω
If the following conditions hold:
4. $A \in \mathcal{F} \quad \Rightarrow \quad A^{c} \in \mathcal{F}$
5. $A_{1}, A_{2}, \ldots \in \mathcal{F} \quad \Rightarrow \quad \bigcup_{i=1}^{\infty} A_{i} \in \mathcal{F}$

Axioms of Probability

$(\Omega, \mathcal{F})=$ a measurable space

Any function $P: \mathcal{F} \rightarrow[0,1]$ such that

1. (unit measure) $P(\Omega)=1$
2. $(\sigma$-additivity) Any countable sequence of disjoint events $A_{1}, A_{2}, \ldots \in \mathcal{F}$ satisfies $P\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$
is called a probability measure (probability distribution)
$(\Omega, \mathcal{F}, P)=$ a probability space

A FEW COMMENTS ON TERMINOLOGY

- A few new terms, including countable, closure
- only a small amount of terminology used, can google these terms and learn on your own
- notation sheet in notes
- Countable: integers, \{0.1,2.0,3.6\},...
- Uncountable: real numbers, intervals, ...
- Interchangeably use (though its somewhat loose)
- discrete and countable
- continuous and uncountable

Sample Spaces

Ω

discrete (countable)

$$
\begin{array}{cl}
\text { discrete (counta.ble) } & \text { continuous (uncountable) } \\
\Omega=\{1,2,3,4,5,6\} & \Omega=[0,1] \\
\Omega=\mathbb{N} & \Omega=\mathbb{R} \\
\text { e.g., } \mathcal{F}=\{\emptyset,\{1,2\},\{3,4,5,6\},\{1,2,3,4,5,6\}\} & \text { e.g., } \mathcal{F}=\{\emptyset,[0,0.5],(0.5,1.0],[0,1]\} \\
\text { Typically: } \mathcal{F}=\mathcal{P}(\Omega) & \text { Typically: } \mathcal{F}=\mathcal{B}(\Omega) \\
\text { Power set } & \\
\Omega=[0,1] \cup\{2\}=\text { mixed space } &
\end{array}
$$

Finding Probability Distributions

$(\Omega, \mathcal{F})=$ a measurable space

Example:

$$
\begin{aligned}
\Omega & =\{0,1\} \\
\mathcal{F} & =\{\emptyset,\{0\},\{1\}, \Omega\}
\end{aligned}
$$

$$
P(A)=\left\{\begin{array}{ll}
1-\alpha & A=\{0\} \\
\alpha & A=\{1\} \\
0 & A=\emptyset \\
1 & A=\Omega
\end{array} \quad \alpha \in[0,1]\right.
$$

How can we choose P in practice?
Clearly, we cannot do it arbitrarily.
How can we satisfy all constraints?

Probability Mass Functions

$\Omega=$ discrete sample space
$\mathcal{F}=\mathcal{P}(\Omega)$

Probability mass function:

1. $p: \Omega \rightarrow[0,1]$
2. $\sum_{\omega \in \Omega} p(\omega)=1$

The probability of any event $A \in \mathcal{F}$ is defined as

$$
P(A)=\sum_{\omega \in A} p(\omega)
$$

Arbitrary PMFs

e.g. PMF for a fair die (table of values)

$$
\begin{aligned}
\Omega & =\{1,2,3,4,5,6\} \\
p(\omega) & =1 / 6 \quad \forall \omega \in \Omega
\end{aligned}
$$

$$
1 / 6 \quad 1 / 6
$$

Exercise: How are PMFs useful as a model?

- Recall we wanted to model commute times
- We could use a probability table for minutes: count number of times $t=1,2,3, \ldots$ occurs and then normalize probabilities by \# samples
- Pick t with the largest $\mathrm{p}(\mathrm{t})$

Useful PMFs

$$
p(\omega)= \begin{cases}\alpha & \omega=S \\ 1-\alpha & \omega=F\end{cases}
$$

Alternatively, $\Omega=\{0,1\}$

$$
p(k)=\alpha^{k} \cdot(1-\alpha)^{1-k}
$$

$$
\forall k \in \Omega
$$

Useful PMFs

Poisson distribution:

$$
\Omega=\{0,1, \ldots\} \lambda \in(0, \infty)
$$

e.g., amount of mail received in a day number of calls received by call center in an hour

$$
p(k)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

Exercise: Can we use a Poisson for commute times?

- Used a probability table (histogram) for minutes: count number of times $t=1,2,3, \ldots$ occurs and then normalize probabilities by \# samples
- Can we use a Poisson?
$p(k)=\frac{\lambda^{k} e^{-\lambda}}{k!}$

Probability Density Functions

$\Omega=$ continuous sample space
$\mathcal{F}=\mathcal{B}(\Omega)$

Probability density function:

$$
\begin{aligned}
& \text { 1. } p: \Omega \rightarrow[0, \infty) \\
& \text { 2. } \int_{\Omega} p(\omega) d \omega=1
\end{aligned}
$$

The probability of any event $A \in \mathcal{F}$ is defined as

$$
P(A)=\int_{A} p(\omega) d \omega .
$$

PMFs vs. PDFs

$\Omega=$ discrete sample space
Consider a singleton event $\{\omega\} \in \mathcal{F}$, where $\omega \in \Omega$

$$
P(\{\omega\})=p(\omega)
$$

$\Omega=$ continuous sample space
Example:

- Stopping time of a car, in interval [3,15]. What is the probability of seeing a stopping time of exactly 3.141596 ? (How much mass in [3,15]?)
- More reasonable to ask the probability of stopping between 3 to 3.5 seconds.

PMFs vs. PDFs

$\Omega=$ discrete sample space
Consider a singleton event $\{\omega\} \in \mathcal{F}$, where $\omega \in \Omega$

$$
P(\{\omega\})=p(\omega)
$$

$\Omega=$ continuous sample space
Consider an interval event $A=[x, x+\Delta x]$, where Δ is small

$$
\begin{aligned}
P(A) & =\int_{x}^{x+\Delta x} p(\omega) d \omega \\
& \approx p(x) \Delta x
\end{aligned}
$$

Useful PDFs

Uniform distribution: $\Omega=[a, b]$

$\forall \omega \in[a, b]$

UsEFUL PDFS

Gaussian distribution:
$\Omega=\mathbb{R} \quad \mu \in \mathbb{R}, \sigma \in \mathbb{R}^{+}$

$$
p(\omega)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(\omega-\mu)^{2}}
$$

$\Omega=[0, \infty) \quad \lambda>0$
$p(\omega)=\lambda e^{-\lambda \omega}$
$\forall \omega \geq 0$

EXERCISE: MODELING COMMUTE TIMES

Gamma

Which might you choose?

$$
p(t)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(t-\mu)^{2}}{2 \sigma^{2}}}
$$

Random Variables

Musician is a random variable (a function) A is the new event space
Can ask $P(M=0)$ and $P(M=1)$

We instinctively create this transformation

Assume Ω is a set of people.

Compute the probability that a randomly selected person $\omega \in \Omega$ has a cold.
Define event $A=\{\omega \in \Omega:$ Disease $(\omega)=\operatorname{cold}\}$.
Disease is our new random variable, $P($ Disease $=\operatorname{cold})$
Disease is a function that maps outcome space to new outcome space $\{$ cold, not cold $\}$

Disease is a function, which is neither a variable nor random BUT, this term is still a good one since we treat Disease as a variable And assume it can take on different values (randomly according to some distribution)

Random Variable: Formal Definition

$(\Omega, \mathcal{F}, P)=$ a probability space
Random variable:

1. $X: \Omega \rightarrow \Omega_{X}$
2. $\forall A \in \mathcal{B}\left(\Omega_{X}\right)$ it holds that $\{\omega: X(\omega) \in A\} \in \mathcal{F}$

It follows that: $P_{X}(A)=P(\{\omega: X(\omega) \in A\})$
Example $X: \Omega \rightarrow[0, \infty)$
Ω is set of (measured) people in population
with associated measurements such as height and weight
$X(\omega)=$ height
$A=$ interval $=\left[5^{\prime} 1^{\prime \prime}, 5^{\prime} 2^{\prime \prime}\right]$
$P(X \in A)=P\left(5^{\prime} 1^{\prime \prime} \leq X \leq 5^{\prime} 2^{\prime \prime}\right)=P(\{\omega: X(\omega) \in A\})$

5 minute break and Exercise

- Let X be a random variable that corresponds to the ratio of hard-to-easy problems on an assignment. Assume it takes values in $\{0.1,0.25,0.7\}$. Is this discrete or continuous? Does it have a PMF or PDF? Further, where could the variability come from? i.e., why is this a random variable?
- Let X be the stopping time of a car, taking values in $[3,5]$ union $[7,9]$. Is this discrete or continuous?
- Think of an example of a discrete random variable (RV) and a continuous RV
- We provided several named PMFs. Why do we use these explicit functional forms? Why not just tables of values, which is more flexible?

What if we have more than two variables...

- So far, we have considered scalar random variables
- Axioms of probability defined abstractly, apply to vector random variables
$\Omega=$ sample space, all outcomes of the experiment $\mathcal{F}=$ cvent space, set of subsets of Ω

$$
\begin{aligned}
& \Omega=\mathbb{R}^{2}, \text { e.g., } \omega=[-0.5,10] \\
& \Omega=[0,1] \times[2,5], \text { e.g., } \omega=[0.2,3.5]
\end{aligned}
$$

But, when defining probabilities, we will want to consider how the variables interact

Two discrete random variables

Random variables X and Y Outcome spaces \mathcal{X} and \mathcal{Y}

$$
\begin{gathered}
p(x, y)=P(X=x, Y=y) \\
\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y)=1 .
\end{gathered}
$$

$\mathcal{X}=\{$ young, old $\}$ and $\mathcal{Y}=\{$ no arthritis, arthritis $\}$

	Y	
	0	1
- 0	1/2	1/100
X	1/10	39/100

SOME QUESTIONS WE MIGHT ASK NOW THAT WE HAVE TWO RANDOM VARIABLES

$$
\mathcal{X}=\{\text { young }, \text { old }\} \text { and } \mathcal{Y}=\{\text { no arthritis }, \text { arthritis }\}
$$

Are these two variables related?
Or do they change completely independently of each other?
Given this joint distribution, can we determine just the distribution over arthritis? i.e., $P(Y=1)$? (Marginal distribution)

If we knew something about one of the variables, say that the person Is young, do we now the distribution over Y? (Conditional distribution)

Example: Marginal and Conditional Distribution

$$
\mathcal{X}=\{\text { young }, \text { old }\} \text { and } \mathcal{Y}=\{\text { no arthritis }, \text { arthritis }\}
$$

$P(Y=1)=P(Y=1, X=0)+P(Y=1, X=1)=40 / 100$ What is $P(Y=0)$?
$P(X=1)=49 / 100$
$P(Y=1 \mid X=0)=$?
Is it $1 / 100$, where the table tells us $\mathrm{P}(\mathrm{Y}=1, \mathrm{X}=0)$?

Conditional Distributions

Conditional probability distribution:

$$
p(y \mid x)=\frac{p(x, y)}{p(x)}
$$

The probability of an event A, given that $X=x$, is:

$$
P(Y \in A \mid X=x)= \begin{cases}\sum_{y \in A} p(y \mid x) & Y: \text { discrete } \\ \int_{A} p(y \mid x) d y & Y: \text { continuous }\end{cases}
$$

EXercise: Conditional Distribution

$$
\mathcal{X}=\{\text { young }, \text { old }\} \text { and } \mathcal{Y}=\{\text { no arthritis }, \text { arthritis }\}
$$

$P(Y=1 \mid X=0)=?$
What is $\mathrm{P}(\mathrm{Y}=0 \mid \mathrm{X}=0)$?
Should $P(Y=1 \mid X=0)+P(Y=0 \mid X=0)=1$?

Joint distributions for many variables

In general, we can consider d-dimensional random variable $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ with vector-valued outcomes $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right)$, such that each x_{i} is chosen from some \mathcal{X}_{i}. Then, for the discrete case, any function $p: \mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{d} \rightarrow[0,1]$ is called a multidimensional probability mass function if

$$
\sum_{x_{1} \in \mathcal{X}_{1}} \sum_{x_{2} \in \mathcal{X}_{2}} \cdots \sum_{x_{d} \in \mathcal{X} d} p\left(x_{1}, x_{2}, \ldots, x_{d}\right)=1 .
$$

or, for the continuous case, $p: \mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{d} \rightarrow[0, \infty]$ is a multidimensional probability density function if

$$
\int_{\mathcal{X}_{1}} \int_{\mathcal{X}_{2}} \cdots \int_{\mathcal{X} d} p\left(x_{1}, x_{2}, \ldots, x_{d}\right) d x_{1} d x_{2} \ldots d x_{d}=1
$$

MARGINAL DISTRIBUTIONS

A marginal distribution is defined for a subset of $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ by summing or integrating over the remaining variables. For the discrete case, the marginal distribution $p\left(x_{i}\right)$ is defined as

$$
p\left(x_{i}\right)=\sum_{x_{1} \in \mathcal{X}_{1}} \cdots \sum_{x_{i-1} \in \mathcal{X}_{i-1}} \sum_{x_{i+1} \in \mathcal{X}_{i+1}} \cdots \sum_{x_{d} \in \mathcal{X}_{d}} p\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{d}\right),
$$

where the variable x_{i} is fixed to some value and we sum over all possible values of the other variables. Similarly, for the continuous case, the marginal distribution $p\left(x_{i}\right)$ is defined as

$$
p\left(x_{i}\right)=\int_{\mathcal{X}_{1}} \cdots \int_{\mathcal{X}_{i-1}} \int_{\mathcal{X}_{i+1}} \cdots \int_{\mathcal{X}_{d}} p\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{i-1} d x_{i+1} \ldots d x_{d}
$$

Natural question: Why do you use p for $\mathrm{p}(\mathrm{xi})$ and for $\mathrm{p}(\mathrm{x} 1, \ldots ., \mathrm{xd})$? They have different domains, they can't be the same function!

DROPPING SUBSCRIPTS

Instead of:

$$
p_{Y \mid X}(y \mid x)=\frac{p_{X Y}(x, y)}{p_{X}(x)}
$$

We will write:

$$
p(y \mid x)=\frac{p(x, y)}{p(x)}
$$

ANOTHER EXAMPLE FOR CONDITIONAL DISTRIBUTIONS

- Let X be a Bernoulli random variable (i.e., 0 or 1 with probability alpha)
- Let Y be a random variable in $\{10,11, \ldots, 1000\}$
- $p(y \mid X=0)$ and $p(y \mid X=1)$ are different distributions
- Two types of books: fiction ($\mathrm{X}=0$) and non-fiction ($\mathrm{X}=1$)
- Let Y corresponds to number of pages
- Distribution over number of pages different for fiction and non-fiction books (e.g., average different)

EXAMPLE CONTINUED

- Two types of books: fiction ($\mathrm{X}=0$) and non-fiction ($\mathrm{X}=1$)
- Y corresponds to number of pages
- $p(y \mid X=0)=p(X=0, y) / p(X=0)$
- $p(X=0, y)=$ probability that a book is fiction and has y pages (imagine randomly sampling a book)
- $p(X=0)=$ probability that a book is fiction
- If most books are non-fiction, $p(X=0, y)$ is small even if y is a likely number of pages for a fiction book
- $p(X=0)$ accounts for the fact that joint probability small if $p(X=0)$ is small

ANOTHER EXAMPLE

- Two types of books: fiction ($\mathrm{X}=0$) and non-fiction ($\mathrm{X}=1$)
- Let Y be a random variable over the reals, which corresponds to amount of money made
- $p(y \mid X=0)$ and $p(y \mid X=1)$ are different distributions
- e.g., even if both $p(y \mid X=0)$ and $p(y \mid X=1)$ are Gaussian, they likely have different means and variances

What do we know about P(Y)?

- We know p(y | x)
- We know marginal $p(x)$
- Correspondingly we know $p(x, y)=p(y \mid x) p(x)$
- from conditional probability definition that

$$
p(y \mid x)=p(x, y) / p(x)
$$

- What is the marginal $p(y)$?

$$
\begin{aligned}
p(y) & =\sum_{x} p(x, y) \\
& =\sum_{x} p(y \mid x) p(x) \\
& =p(y \mid X=0) p(X=0)+p(y \mid X=1) p(X=1)
\end{aligned}
$$

Sept 12: Probability review continued

Machine learning topic overview

* from Yaser Abu-Mostafa, https://work.caltech.edu/library/

Reminders

- Assignment 1 (September 28),
- small typo fixes (bold X, and range of lambda to [0, infty) rather than (0, infty))
- "express in terms of givens a, b, c " does not mean you have to use all a, b and c, but that the final expression should include (some subset) of these given values
- Office hours and labs start this week
- Martha: 3-5 p.m. on Tuesday (ATH 3-05)
- Labs: W 5-8 p.m. and F 2-5 p.m.

Chain Rule

Conditional probability distribution:

$$
p\left(x_{k} \mid x_{1}, \ldots, x_{k-1}\right)=\frac{p\left(x_{1}, \ldots, x_{k}\right)}{p\left(x_{1}, \ldots, x_{k-1}\right)}
$$

This leads to:

$$
p\left(x_{1}, \ldots, x_{k}\right)=p\left(x_{1}\right) \prod_{l=2}^{k} p\left(x_{l} \mid x_{1}, \ldots, x_{l-1}\right)
$$

Two variable example $p(x, y)=p(x \mid y) p(y)=p(y \mid x) p(x)$

How do we get Bayes rule?

Recall chain rule: $p(x, y)=p(x \mid y) p(y)=p(y \mid x) p(x)$

Bayes rule:

$$
p(y \mid x)=\frac{p(x \mid y) p(y)}{p(x)}
$$

EXERCISE: CONDITIONAL PROBABILITIES

- Using conditional probabilities, we can incorporate other external information (features)
- Let y be the commute time, x the day of the year
- Array of conditional probability values \rightarrow p(y | x)
- $y=1,2, \ldots$ and $x=1,2, \ldots, 365$
- What are some issues with this choice for x ?
- What other x could we use feasibly?

EXERCISE: AdDING IN AUXILIARY INFORMATION

- Gamma distribution for commute times extrapolates between recorded time in minutes
- Can incorporate external information (features) by modeling theta $=$ function(features)

$$
\theta=\sum_{i=1}^{d} w_{i} x_{i}
$$

Independence of Random Variables

X and Y are independent if:

$$
p(x, y)=p(x) p(y)
$$

X and Y are conditionally independent given Z ir:

$$
p(x, y \mid z)=p(x \mid z) p(y \mid z)
$$

Conditional Independence Examples

EXample 7 In The notes

- Imagine you have a biased coin (does not flip 50\% heads and 50\% tails, but skewed towards one)
- Let $\mathrm{Z}=$ bias of a coin (say outcomes are $0.3,0.5,0.8$ with associated probabilities $0.7,0.2,0.1$)
- what other outcome space could we consider?
- what kinds of distributions?
- Let X and Y be consecutive flips of the coin
- Are X and Y independent?
- Are X and Y conditionally independent, given Z ?

Expected value (Mean)

$$
\mathbb{E}[X]= \begin{cases}\sum_{x \in \mathcal{X}} x p(x) & X: \text { discrete } \\ \int_{\mathcal{X}} x p(x) d x & X: \text { continuous }\end{cases}
$$

EXPECTATIONS WITH FUNCTIONS

$$
\begin{aligned}
& f: \mathcal{X} \rightarrow \mathbb{R} \\
& \mathbb{E}[f(X)]= \begin{cases}\sum_{x \in \mathcal{X}} f(x) p(x) & X: \text { discrete } \\
\int_{\mathcal{X}} f(x) p(x) d x & X: \text { continuous }\end{cases}
\end{aligned}
$$

EXPECTED VALUE FOR MULTIVARIATE

$$
\mathbb{E}[\boldsymbol{X}]= \begin{cases}\sum_{\boldsymbol{x} \in \mathcal{X}} \boldsymbol{x} p(\boldsymbol{x}) & \boldsymbol{X}: \text { discrete } \\ \int_{\mathcal{X}} \boldsymbol{x} p(\boldsymbol{x}) d \boldsymbol{x} & \boldsymbol{X}: \text { continuous }\end{cases}
$$

Each instance x is a vector, p is a function on these vectors

CoVARIANCE

X

Y

\square

$$
\begin{aligned}
\operatorname{Cov}[X, Y] & =\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])] \\
& =\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
\end{aligned}
$$

$$
\operatorname{Corr}[X, Y]=\frac{\operatorname{Cov}[X, Y]}{\sqrt{V[X] \cdot V[Y]}},
$$

COVARIANCE FOR MORE THAN TWO DIMENSIONS

$$
\begin{aligned}
& \boldsymbol{X}=\left[X_{1}, \ldots, X_{d}\right] \\
\Sigma_{i j}= & \operatorname{Cov}\left[X_{i}, X_{j}\right] \\
= & \mathbb{E}\left[\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)\left(X_{j}-\mathbb{E}\left[X_{j}\right]\right)\right] \\
\boldsymbol{\Sigma}= & \operatorname{Cov}[\boldsymbol{X}, \boldsymbol{X}] \in \mathbb{R}^{d \times d} \\
= & \mathbb{E}\left[(\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}])\left(\boldsymbol{X}-\mathbb{E}(\boldsymbol{X})^{\top}\right]\right. \\
= & \mathbb{E}\left[\boldsymbol{X} \boldsymbol{X}^{\top}\right]-\mathbb{E}[\boldsymbol{X}] \mathbb{E}[\boldsymbol{X}]^{\top} .
\end{aligned}
$$

Covariance for more than two dimensions

$$
\begin{aligned}
\boldsymbol{X}=\left[X_{1}, \ldots, X_{d}\right] & \boldsymbol{\Sigma} \\
& =\operatorname{Cov}[\boldsymbol{X}, \boldsymbol{X}] \in \mathbb{R}^{d \times d} \\
& =\mathbb{E}\left[(\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}])\left(\boldsymbol{X}-\mathbb{E}(\boldsymbol{X})^{\top}\right]\right. \\
\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d} & \\
& =\mathbb{E}\left[\boldsymbol{X} \boldsymbol{X}^{\top}\right]-\mathbb{E}[\boldsymbol{X}] \mathbb{E}[\boldsymbol{X}]^{\top} .
\end{aligned}
$$

Dot product
$\mathbf{x}^{\top} \mathbf{y}=\sum_{i=1}^{d} x_{i} y_{i}$

Outer product

$$
\mathbf{x y}^{\top}=\left[\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \ldots & x_{1} y_{d} \\
x_{2} y_{1} & x_{2} y_{2} & \ldots & x_{2} y_{d} \\
\vdots & \vdots & & \vdots \\
x_{d} y_{1} & x_{d} y_{2} & \ldots & x_{d} y_{d}
\end{array}\right]
$$

SOME USEFUL PROPERTIES

1. $\mathbb{E}[c \boldsymbol{X}]=c \mathbb{E}[\boldsymbol{X}]$
2. $\mathbb{E}[\boldsymbol{X}+\boldsymbol{Y}]=\mathbb{E}[\boldsymbol{X}]+\mathbb{E}[\boldsymbol{Y}]$
3. $V[c]=0 \quad \triangleright$ the variance of a constant is zero
4. $\mathrm{V}[\boldsymbol{X}] \succeq 0$ (i.e., is positive semi-definite), where for $d=1, \mathrm{~V}[\boldsymbol{X}] \geq 0$ $\mathrm{V}[\boldsymbol{X}]$ is shorthand for $\operatorname{Cov}[\boldsymbol{X}, \boldsymbol{X}]$.
5. $\mathrm{V}[c \boldsymbol{X}]=c^{2} \mathrm{~V}[\boldsymbol{X}]$.
6. $\operatorname{Cov}[\boldsymbol{X}, \boldsymbol{Y}]=\mathbb{E}\left[(\boldsymbol{X}-\mathbb{E}[\boldsymbol{X}])\left(\boldsymbol{Y}-\mathbb{E}(\boldsymbol{Y})^{\top}\right]=\mathbb{E}\left[\boldsymbol{X} \boldsymbol{Y}^{\top}\right]-\mathbb{E}[\boldsymbol{X}] \mathbb{E}[\boldsymbol{Y}]^{\top}\right.$
7. $\operatorname{Cov}[\boldsymbol{X}+\boldsymbol{Y}]=\mathrm{V}[\boldsymbol{X}]+\mathrm{V}[\boldsymbol{Y}]+2 \operatorname{Cov}[\boldsymbol{X}, \boldsymbol{Y}]$

Multidimensional PMF

Now record both commute time and number red lights $\Omega=\{4, \ldots, 14\} \times\{1,2,3,4,5\}$
PMF is normalized 2-d table (histogram) of occurrences

Multidimensional Gaussian

$$
\begin{aligned}
& \Omega=\mathbb{R}^{\mathrm{d}} \\
& \mathcal{F}=\mathcal{B}(\mathbb{R})^{\mathrm{d}}
\end{aligned}
$$

$\boldsymbol{\mu} \in \mathbb{R}^{\mathrm{d}}$
$\boldsymbol{\Sigma}=$ positive definite ${ }^{d} \times \mathrm{d}$ matrix $|\boldsymbol{\Sigma}|=$ determinant of $\boldsymbol{\Sigma}$

$$
p(\boldsymbol{\omega})=\frac{1}{\sqrt{(2 \pi)^{\mathrm{d} \mid}|\boldsymbol{\Sigma}|}} \exp \left(-\frac{1}{2}(\boldsymbol{\omega}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-\mathbf{1}}(\boldsymbol{\omega}-\boldsymbol{\mu})\right)
$$

$$
\mu=(0,0)
$$

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
1 & .75 \\
.75 & 1
\end{array}\right]
$$

Mixtures of Distributions

Mixture model:

A set of m probability distributions, $\left\{p_{i}(x)\right\}_{i=1}^{m}$

$$
p(x)=\sum_{i=1}^{m} w_{i} p_{i}(x)
$$

where $\boldsymbol{w}=\left(w_{1}, w_{2}, \ldots, w_{m}\right)$ and non-negative and

$$
\sum_{i=1}^{m} w_{i}=1
$$

Mixtures of Gaussians

Mixture of $m=2$ Gaussian distributions:

$$
w_{1}=0.75, w_{2}=0.25
$$

$$
p(x)=\sum_{i=1}^{m} w_{i} p_{i}(x)
$$

Example: Sample average is unbiased estimator

Obtain instances x_{1}, \ldots, x_{n}
What can we say about the sample average?
This sample is random, so we consider i.i.d. random variables X_{1}, \ldots, X_{n}
Reflects that we could have seen a different set of instances x_{i}

$$
\begin{aligned}
\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right] & =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \mu \\
& =\mu
\end{aligned}
$$

For any one sample x_{1}, \ldots, x_{n}, unlikely that $\frac{1}{n} \sum_{i=1}^{n} x_{i}=\mu$

