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REMINDERS

• Assignment 1 is due on September 28 

• Thought questions 1 are due on September 21 

• Chapters 1-4, about 40 pages 

• If you are printing, don’t print all the notes yet 

• Office hours 

• Martha: 3-5 p.m. on Tuesday (ATH 3-05) 

• Labs: W 5-8 p.m. and F 2-5 p.m. 

• Start thinking about datasets for your mini-project  

• I do not expect you to know formulas, like pdfs 

• I will use a combination of slides and writing on the 
board (where you should take notes)



BACKGROUND FOR COURSE

• Need to know calculus, mostly derivatives 

• Will almost never integrate 

• I will teach you multivariate calculus 

• Need to know linear algebra 

• I assume you know about vector, matrices and 
dot products 

• I will teach you more advanced topics, like 
singular value decompositions 

• Need to have learned a bit about probability 

• Concerns for final: will be testing only 
fundamentals, not intended to be difficult to finely 
separate students



PROBABILITY THEORY IS THE SCIENCE OF PREDICTIONS*

*Quote from Csaba Szepesvari, https://eclass.srv.ualberta.ca/pluginfile.php/1136251/
mod_resource/content/1/LectureNotes_Probabilities.pdf

• The goal of science is to discover theories that can be 
used to predict how natural processes evolve or explain 
natural phenomenon, based on observed phenomenon. 

• The goal of probability theory is to provide the 
foundation to build theories (= models) that can be used 
to reason about the outcomes of events, future or past, 
based on observations. 

• prediction of the unknown which may depend on what 
is observed and whose nature is probabilistic

https://eclass.srv.ualberta.ca/pluginfile.php/1136251/mod_resource/content/1/LectureNotes_Probabilities.pdf
https://eclass.srv.ualberta.ca/pluginfile.php/1136251/mod_resource/content/1/LectureNotes_Probabilities.pdf
https://eclass.srv.ualberta.ca/pluginfile.php/1136251/mod_resource/content/1/LectureNotes_Probabilities.pdf


(MEASURABLE) SPACE OF OUTCOMES AND EVENTS

Note: terminology sigma field sounds technical, but it just means this event space

an event space

F has been changed to E in the notes



WHY IS THIS THE DEFINITION?
Intuitively,

1. A collection of outcomes is an event (e.g., either a 1 or 6 was rolled)

2. If we can measure two events separately, then their union should also be

a measurable event

3. If we can measure an event, then we should be able to measure that that

event did not occur (the complement)



AXIOMS OF PROBABILITY

1. (unit measure) P (⌦) = 1

2. (�-additivity) Any countable sequence of disjoint events

A1, A2, . . . 2 F satisfies P ([1
i=1Ai) =

P1
i=1 P (Ai)



A FEW COMMENTS ON TERMINOLOGY

• A few new terms, including countable, closure 

• only a small amount of terminology used, can 
google these terms and learn on your own 

• notation sheet in notes 

• Countable: integers, {0.1,2.0,3.6},… 

• Uncountable: real numbers, intervals, … 

• Interchangeably use (though its somewhat loose) 

• discrete and countable 

• continuous and uncountable



SAMPLE SPACES

e.g.,F = {;, {1, 2}, {3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}} e.g.,F = {;, [0, 0.5], (0.5, 1.0], [0, 1]}



FINDING PROBABILITY DISTRIBUTIONS



PROBABILITY MASS FUNCTIONS



ARBITRARY PMFS

e.g. PMF for a fair die (table of values)
⌦ = {1, 2, 3, 4, 5, 6}

p(!) = 1/6 8! 2 ⌦



EXERCISE: HOW ARE PMFS USEFUL AS A MODEL?
• Recall we wanted to model commute times 

• We could use a probability table for minutes: count 
number of times t = 1, 2, 3, … occurs and then 
normalize probabilities by # samples 

• Pick t with the largest p(t) 



USEFUL PMFS



USEFUL PMFS

e.g., amount of mail received in a day 
number of calls received by call center in an hour



EXERCISE: CAN WE USE A POISSON FOR COMMUTE TIMES?
• Used a probability table (histogram) for minutes: 

count number of times t = 1, 2, 3, … occurs and 
then normalize probabilities by # samples 

• Can we use a Poisson?



PROBABILITY DENSITY FUNCTIONS



PMFS VS. PDFS

Example:  

- Stopping time of a car, in interval [3,15]. What is the probability of 
seeing a stopping time of exactly 3.141596? (How much mass in [3,15]?) 
- More reasonable to ask the probability of stopping between 3 to 3.5 
seconds.



PMFS VS. PDFS



USEFUL PDFS



USEFUL PDFS



USEFUL PDFS



EXERCISE: MODELING COMMUTE TIMES

Gamma
Poisson

Gaussian

Which might you choose?

p(t) =
�te��

t!

p(t) =
tk�1e�t/✓

✓k�(k)

p(t) =
1p
2⇡�2

e�
(t�µ)2

2�2



RANDOM VARIABLES

Age: 35      Likes sports: Yes 
Height: 1.85m   Smokes: No 
Weight: 75kg      Marital st.: Single 
IQ: 104      Occupation: Musician

Age: 26     Likes sports: Yes 
Height: 1.75m  Smokes: No 
Weight: 79kg     Marital st.: Divorced 
IQ: 103     Occupation: Athlete

Musician is a random variable (a function) 
A is the new event space 
Can ask P(M = 0) and P(M = 1)



WE INSTINCTIVELY CREATE THIS TRANSFORMATION

Assume ⌦ is a set of people.

Compute the probability that a randomly selected person ! 2 ⌦ has a cold.

Define event A = {! 2 ⌦ : Disease(!) = cold}.

Disease is our new random variable, P (Disease = cold)

Disease is a function that maps outcome space to new outcome space {cold, not cold}

Disease is a function, which is neither a variable nor random 
BUT, this term is still a good one since we treat Disease as a variable 
And assume it can take on different values  
(randomly according to some distribution)



RANDOM VARIABLE: FORMAL DEFINITION

Example X : ⌦ ! [0,1)

⌦ is set of (measured) people in population

with associated measurements such as height and weight

X(!) = height

A = interval = [5

0
1

00, 50200]

P (X 2 A) = P (5

0
1

00  X  5

0
2

00
) = P ({! : X(!) 2 A})



5 MINUTE BREAK AND EXERCISE

• Let X be a random variable that corresponds to the 
ratio of hard-to-easy problems on an assignment. 
Assume it takes values in {0.1, 0.25, 0.7}. Is this 
discrete or continuous? Does it have a PMF or PDF? 
Further, where could the variability come from? i.e., 
why is this a random variable? 

• Let X be the stopping time of a car, taking values in 
[3,5] union [7,9]. Is this discrete or continuous? 

• Think of an example of a discrete random variable 
(RV) and a continuous RV 

• We provided several named PMFs. Why do we use 
these explicit functional forms? Why not just tables 
of values, which is more flexible?



WHAT IF WE HAVE MORE THAN TWO VARIABLES…

• So far, we have considered scalar random variables 

• Axioms of probability defined abstractly, apply to 
vector random variables

⌦ = R2, e.g., ! = [�0.5, 10]

⌦ = [0, 1]⇥ [2, 5], e.g., ! = [0.2, 3.5]

But, when defining probabilities, we will want to consider 
how the variables interact



TWO DISCRETE RANDOM VARIABLES

Random variables X and Y
Outcome spaces X and Y

answer is to actually take the expected value (mean) of this gamma distribution, which we
define below in Section 1.4. ⇤

1.3 Multivariate random variables
Much of the above development extends to multivariate random variables—a vector of ran-
dom variables—because the definition of outcome spaces and probabilities is general. The
examples so far, however, have dealt with scalar random variables, because for multivariate
random variables, we need to understand how variables interact. In this section, we discuss
several new notions that only arise when there are multiple random variables, including
joint distributions, conditional distributions, marginals and dependence between variables.

Let us start with a simpler example, with two discrete random variables X and Y with
outcome spaces X and Y. There is a joint probability mass function p : X ◊ Y æ [0, 1], and
corresponding joint probability distribution P , such that

p(x, y) = P (X = x, Y = y)

where the pmf needs to satisfy
ÿ

xœX

ÿ

yœY
p(x, y) = 1.

For example, if X = {young, old} and Y = {no arthritis, arthritis}, then the pmf could be
the table of probabilities

Y
0 1

X
0 1/2

1/100

1 1/10

39/100

This fits within the definition of probability spaces, because � = X ◊ Y is a valid space,
and

q
Êœ�

p(Ê) =
q

(x,y)œ�

p(x, y) =
q

xœX
q

yœY p(x, y). We consider the random variable
Z = (X, Y ) to be a multivariate random variable, of two dimensions.

Looking at the joint probabilities in the table, we can definitely see that the two random
variables interact. The joint probability is small for young and having arthritis, for example.
Further, there seems to be more magnitude in the rows corresponding to young, suggesting
that the probabilities are also influenced by the proportion of people in the population that
are old or young. In fact, one might ask if we can figure out this proportion just from this
table.

The answer is a resounding yes, and leads us to marginal distributions and why we
might care about marginal distributions. Given a joint distribution over random variables,
one would hope that we could extract more specific probabilities, like the distribution over
just one of those variables, which is called the marginal distribution. The marginal can be
simply computed, by summing up over all values of the other variable

P (X = young) = p(young, no arthritis) + p(young, arthritis) = 51

100

.

A young person either does or does not have arthritis, so summing up over these two
possible cases factors out that variable. Therefore, using data collected for random variable

21
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SOME QUESTIONS WE MIGHT ASK NOW THAT WE HAVE TWO 
RANDOM VARIABLES
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Are these two variables related?  
Or do they change completely independently of each other? 

Given this joint distribution, can we determine just the  
distribution over arthritis? i.e., P(Y = 1)? (Marginal distribution) 

If we knew something about one of the variables, say that the person 
Is young, do we now the distribution over Y? (Conditional distribution)



EXAMPLE: MARGINAL AND CONDITIONAL DISTRIBUTION
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P(Y = 1) = P(Y = 1, X = 0) + P(Y = 1, X = 1) = 40/100 
What is P(Y = 0)? 

P(X = 1) = 49/100 

P(Y = 1 | X = 0) = ?  
Is it 1/100, where the table tells us P(Y = 1, X=0)? 



CONDITIONAL DISTRIBUTIONS

p(y|x) = p(x, y)

p(x)

where p(x) > 0.
Exercise 2: Verify that p(y|x) sums (integrates) to 1 over all values y œ Y for a fixed
given x œ X , and thus satisfies the conditions of a probability mass (density) function. ⇤

Equation (1.1) now allows us to calculate the posterior probability of an event A, given
some observation x, as

P (Y œ A|X = x) =

Y
__]

__[

q
yœA p(y|x) Y : discrete

A p(y|x)dy Y : continuous

Writing p(x, y) = p(x|y)p(y) = p(y|x)p(x) is called the product rule. The extension to more
than two variables is straightforward. We can write

p(xd|x
1

, . . . , xd≠1

) = p(x
1

, . . . , xd)
p(x

1

, . . . , xd≠1

) .

By a recursive application of the product rule, we obtain

p(x
1

, . . . , xd) = p(x
1

)
dŸ

i=2

p(xi|x1

, . . . , xi≠1

) (1.2)

which is referred to as the chain rule or general product rule. For example, for three
variables, the product rule gives

p(x
1

, x
2

, x
3

) = p(x
3

|x
2

, x
1

)p(x
2

|x
1

)p(x
1

)

This rule also applies to collections of random variables, where a collection can be treated
as one random variable. For example,

p(x
1

, x
2

, x
3

) = p(x
2

, x
3

|x
1

)p(x
1

)

This arises because (x
2

, x
3

) have a valid probability space, so we can use the product rule
for two variables: x

1

and (x
2

, x
3

). Using the product rule, giving p(x, y) = p(x|y)p(y) =
p(y|x)p(x), we can also derive Bayes’ rule:

p(x|y) = p(y|x)p(x)
p(y) . (1.3)

Therefore, one really only needs to remember the product rule, to easily recall Bayes’ rule.
You may notice that the order of variables in the product rule did not seem to matter.

It is in fact somewhat interesting that we can either define the conditional distribution
p(x|y) and marginal p(y) or we can define p(y|x) and p(x) and both equivalently recover
the joint distribution p(x, y). This property is simply a fact of the definition of conditional
distributions, and provides flexibility when estimating distributions. We will most use this
equivalence in the form of Bayes rule, when doing parameter estimation and maximum
likelihood. For work in graphical models, which is not discussed here, this flexibility is of
even greater importance.
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EXERCISE: CONDITIONAL DISTRIBUTION

answer is to actually take the expected value (mean) of this gamma distribution, which we
define below in Section 1.4. ⇤

1.3 Multivariate random variables
Much of the above development extends to multivariate random variables—a vector of ran-
dom variables—because the definition of outcome spaces and probabilities is general. The
examples so far, however, have dealt with scalar random variables, because for multivariate
random variables, we need to understand how variables interact. In this section, we discuss
several new notions that only arise when there are multiple random variables, including
joint distributions, conditional distributions, marginals and dependence between variables.

Let us start with a simpler example, with two discrete random variables X and Y with
outcome spaces X and Y. There is a joint probability mass function p : X ◊ Y æ [0, 1], and
corresponding joint probability distribution P , such that

p(x, y) = P (X = x, Y = y)

where the pmf needs to satisfy
ÿ

xœX

ÿ

yœY
p(x, y) = 1.

For example, if X = {young, old} and Y = {no arthritis, arthritis}, then the pmf could be
the table of probabilities

Y
0 1

X
0 1/2

1/100

1 1/10

39/100

This fits within the definition of probability spaces, because � = X ◊ Y is a valid space,
and

q
Êœ�

p(Ê) =
q

(x,y)œ�

p(x, y) =
q

xœX
q

yœY p(x, y). We consider the random variable
Z = (X, Y ) to be a multivariate random variable, of two dimensions.

Looking at the joint probabilities in the table, we can definitely see that the two random
variables interact. The joint probability is small for young and having arthritis, for example.
Further, there seems to be more magnitude in the rows corresponding to young, suggesting
that the probabilities are also influenced by the proportion of people in the population that
are old or young. In fact, one might ask if we can figure out this proportion just from this
table.

The answer is a resounding yes, and leads us to marginal distributions and why we
might care about marginal distributions. Given a joint distribution over random variables,
one would hope that we could extract more specific probabilities, like the distribution over
just one of those variables, which is called the marginal distribution. The marginal can be
simply computed, by summing up over all values of the other variable

P (X = young) = p(young, no arthritis) + p(young, arthritis) = 51

100

.

A young person either does or does not have arthritis, so summing up over these two
possible cases factors out that variable. Therefore, using data collected for random variable
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P(Y = 1 | X = 0) = ?  

What is P(Y = 0 | X = 0)?  
Should P(Y = 1 | X = 0) + P(Y = 0 | X = 0) = 1? 

p(y|x) = p(x, y)

p(x)



JOINT DISTRIBUTIONS FOR MANY VARIABLES
Z = (X, Y ), we can determine the proportion of the population that is young and the
proportion that is old.

In general, we can consider d-dimensional random variable X = (X
1

, X
2

, . . . , Xd) with
vector-valued outcomes x = (x

1

, x
2

, . . . , xd), such that each xi is chosen from some Xi.
Then, for the discrete case, any function p : X

1

◊ X
2

◊ . . . ◊ Xd æ [0, 1] is called a multidi-
mensional probability mass function if

ÿ

x1œX1

ÿ

x2œX2

· · ·
ÿ

xdœX d

p (x
1

, x
2

, . . . , xd) = 1.

or, for the continuous case, p : X
1

◊X
2

◊ . . .◊Xd æ [0, Œ] is a multidimensional probability
density function if

X1 X2
· · ·

X d
p (x

1

, x
2

, . . . , xd) dx
1

dx
2

. . . dxd = 1.

A marginal distribution is defined for a subset of X = (X
1

, X
2

, . . . , Xd) by summing or
integrating over the remaining variables. For the discrete case, the marginal distribution
p (xi) is defined as

p (xi) =
ÿ

x1œX1

· · ·
ÿ

xi≠1œXi≠1

ÿ

xi+1œXi+1

· · ·
ÿ

xdœXd

p (x
1

, . . . , xi≠1

, xi, xi+1

, . . . , xd) ,

where the variable xi is fixed to some value and we sum over all possible values of the other
variables. Similarly, for the continuous case, the marginal distribution p (xi) is defined as

p (xi) =
X1

· · ·
Xi≠1 Xi+1

· · ·
Xd

p (x
1

, . . . , xi≠1

, xi, xi+1

, . . . , xd) dx
1

. . . dxi≠1

dxi+1

. . . dxd.

Notice that we use p to define the density over x, but then we overload this terminology and
also use p for the density only over xi. To be more precise, we should define two separate
functions (pdfs), say p

x

for the density over the multivariate random variable and pxi for
the marginal. It is common, however, to simply use p, and infer the random variable from
context. In most cases, it is clear; if it is not, we will explicitly highlight the pdfs with
additional subscripts.

We can define common multivariate pmfs and pdfs, that are extensions of the scalar
pmfs and pdfs. The most useful extensions include table of probability values, uniform
distributions and Gaussian distributions. We define these concretely in the final section
of this chapter, Section 1.5, for reference. Before we provide these definitions, however,
it will be useful to understand how multiple variables interact, because this will influence
the extension from univariate to multivariate. In particular, it will be useful to understand
conditional distributions and dependence, which we discuss next.

1.3.1 Conditional distributions
Conditional probabilities define probabilities of a random variable X, given information
about the value of another random variable Y . More formally, the conditional probability
p(y|x) for two random variables X and Y is defined as

p(y|x) = p(x, y)
p(x) (1.1)
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MARGINAL DISTRIBUTIONS
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also use p for the density only over xi. To be more precise, we should define two separate
functions (pdfs), say p

x

for the density over the multivariate random variable and pxi for
the marginal. It is common, however, to simply use p, and infer the random variable from
context. In most cases, it is clear; if it is not, we will explicitly highlight the pdfs with
additional subscripts.

We can define common multivariate pmfs and pdfs, that are extensions of the scalar
pmfs and pdfs. The most useful extensions include table of probability values, uniform
distributions and Gaussian distributions. We define these concretely in the final section
of this chapter, Section 1.5, for reference. Before we provide these definitions, however,
it will be useful to understand how multiple variables interact, because this will influence
the extension from univariate to multivariate. In particular, it will be useful to understand
conditional distributions and dependence, which we discuss next.

1.3.1 Conditional distributions
Conditional probabilities define probabilities of a random variable X, given information
about the value of another random variable Y . More formally, the conditional probability
p(y|x) for two random variables X and Y is defined as
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p(x) (1.1)
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Natural question: Why do you use p for p(xi) and for p(x1, …., xd)? 
They have different domains, they can’t be the same function!



DROPPING SUBSCRIPTS

Instead of:

We will write:
p(y|x) = p(x, y)

p(x)



ANOTHER EXAMPLE FOR CONDITIONAL DISTRIBUTIONS

• Let X be a Bernoulli random variable (i.e., 0 or 1 with 
probability alpha) 

• Let Y be a random variable in {10, 11, …, 1000} 

• p(y | X = 0) and p(y | X = 1) are different distributions 

• Two types of books: fiction (X=0) and non-fiction (X=1) 

• Let Y corresponds to number of pages 

• Distribution over number of pages different for fiction 
and non-fiction books (e.g., average different)



EXAMPLE CONTINUED

• Two types of books: fiction (X=0) and non-fiction (X=1) 

• Y corresponds to number of pages 

• p(y | X = 0) = p(X = 0, y)/p(X = 0) 

• p(X = 0 , y) = probability that a book is fiction and has 
y pages (imagine randomly sampling a book) 

• p(X = 0) = probability that a book is fiction 

• If most books are non-fiction, p(X = 0, y) is small even 
if y is a likely number of pages for a fiction book 

• p(X = 0) accounts for the fact that joint probability 
small if p(X = 0) is small



ANOTHER EXAMPLE

• Two types of books: fiction (X=0) and non-fiction (X=1) 

• Let Y be a random variable over the reals, which 
corresponds to amount of money made 

• p(y | X = 0) and p(y | X = 1) are different distributions 

• e.g., even if both p(y | X = 0) and p(y | X = 1) are 
Gaussian, they likely have different means and 
variances



WHAT DO WE KNOW ABOUT P(Y)?

• We know p(y | x) 

• We know marginal p(x) 

• Correspondingly we know p(x, y) = p(y | x) p(x) 

• from conditional probability definition that          
p(y | x) = p(x, y) / p(x) 

• What is the marginal p(y)?

p(y) =
X

x

p(x, y)

=
X

x

p(y|x)p(x)

= p(y|X = 0)p(X = 0) + p(y|X = 1)p(X = 1)



SEPT 12: PROBABILITY REVIEW CONTINUED

Machine learning topic overview 
* from Yaser Abu-Mostafa, https://work.caltech.edu/library/



REMINDERS

• Assignment 1 (September 28),  

• small typo fixes (bold X, and range of lambda to 
[0, infty) rather than (0, infty)) 

• “express in terms of givens a, b, c” does not 
mean you have to use all a, b and c, but that the 
final expression should include (some subset) of 
these given values

• Office hours and labs start this week 

• Martha: 3-5 p.m. on Tuesday (ATH 3-05) 

• Labs: W 5-8 p.m. and F 2-5 p.m.



CHAIN RULE

Two variable example
p(x, y) = p(x|y)p(y) = p(y|x)p(x)



HOW DO WE GET BAYES RULE?

Recall chain rule:
p(x, y) = p(x|y)p(y) = p(y|x)p(x)

p(y|x) = p(x|y)p(y)
p(x)

Bayes rule: 



EXERCISE: CONDITIONAL PROBABILITIES

• Using conditional probabilities, we can incorporate 
other external information (features) 

• Let y be the commute time, x the day of the year 

• Array of conditional probability values —> p(y | x) 

• y = 1, 2, … and x = 1, 2, …, 365 

• What are some issues with this choice for x? 

• What other x could we use feasibly?



EXERCISE: ADDING IN AUXILIARY INFORMATION

• Gamma distribution for commute times 
extrapolates between recorded time in minutes 

• Can incorporate external information (features) by 
modeling theta = function(features)

✓ =
dX

i=1

wixi

p(t) =
tk�1e�t/✓

✓k�(k)



INDEPENDENCE OF RANDOM VARIABLES

We will drop subscripts and write p(x, y) = p(x)p(y)

p(x, y|z) = p(x|z)p(y|z)



CONDITIONAL INDEPENDENCE EXAMPLES 
EXAMPLE 7 IN THE NOTES

• Imagine you have a biased coin (does not flip 50% 
heads and 50% tails, but skewed towards one) 

• Let Z = bias of a coin (say outcomes are 0.3, 0.5, 0.8 
with associated probabilities 0.7, 0.2, 0.1) 

• what other outcome space could we consider? 

• what kinds of distributions? 

• Let X and Y be consecutive flips of the coin 

• Are X and Y independent? 

• Are X and Y conditionally independent, given Z?



EXPECTED VALUE (MEAN)

E [X] =

8
><

>:

P
x2X xp(x) X : discrete

R
X xp(x)dx X : continuous



EXPECTATIONS WITH FUNCTIONS
1.2.5 Expectations and moments

Expectations of functions are defined as sums (or integrals) of function values weighted ac-
cording to the probability mass (or density) function. Given a probability space (X ,B(X ), PX),
we consider a function f : X ! C and define its expectation function as

E [f(X)] =

8

>

<

>

:

P

x2X f(x)p(x) X : discrete

´
X f(x)p(x)dx X : continuous

Note that we use a capital X for the random variable (with f(X) the random variable
transformed by f) and lower case x when it is an instance (e.g., p(x) is the probability of a
specific outcome). The capital X in E [f(X)] also specifies that the summation (integration)
is defined over p(x); this will become more important later when we consider multiple random
variables. It can happen that E [f(X)] = ±1; in such cases we say that the expectation
does not exist or is not well-defined.4 For f(x) = x, we have a standard expectation
E [X] =

P

xp(x), or the mean value of X. Using f(x) = xk results in the k-th moment,
f(x) = log

1/p(x) gives the well-known entropy function H(X), or differential entropy for
continuous random variables, and f(x) = (x� E [X])

2 provides the variance of a random
variable X, denoted by V [X]. Interestingly, the probability of some event A ✓ X 5 can also
be expressed in the form of expectation; i.e.,

P (A) = E [1(X 2 A)] ,

where

1(t) =

(

1 t is true
0 t is false

(1.5)

is an indicator function. With this, it is possible to express the cumulative distribution
function as FX(t) = E[1(X 2 (�1, t])].

Function f(x) inside the expectation can also be complex-valued. For example, 'X(t) =
E[eitX ], where i is the imaginary unit, defines the characteristic function of X. The char-
acteristic function is closely related to the inverse Fourier transform of p(x) and is useful in
many forms of statistical inference. Several expectation functions are summarized in Table
1.1.

Given two random variables X and Y and a specific value x assigned to X, we define
the conditional expectation as

E [f(Y )|x] =

8

>

<

>

:

P

y2Y f(y)p(y|x) Y : discrete

´
Y f(y)p(y|x)dy Y : continuous

4There is sometimes disagreement on terminology, and some definitions allow the expected value to be
infinite, which, for example, still allows the strong law of large numbers. In that setting, an expectation is
not well-defined only if both left and right improper integrals are infinite. For our purposes, this is splitting
hairs.

5This notation is a bit loose; we should say A 2 B(X ) instead of A ✓ X . We used it to re-emphasize
(through this footnote) that some subsets of continuous sets are not measurable.
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f : X ! R



EXPECTED VALUE FOR MULTIVARIATE

Each instance x is a vector, p is a function on these vectors

E [X] =

8
><

>:

P
x2X xp(x) X : discrete

R
X xp(x)dx X : continuous

x1 x2

p(x1, x2)



COVARIANCE
X

Y

where f : Y ! C is some function. Again, using f(y) = y results in E [Y |x] = P

yp(y|x) or
E [Y |x] = ´ yp(y|x)dy. We shall see later that under some conditions E [Y |x] is referred to
as the regression function. These types of integrals are often seen and evaluated in Bayesian
statistics.

For two random variables X and Y we also define

E [f(X,Y )] =

8

>

<

>

:

P

x2X
P

y2Y f(x, y)p(x, y) X,Y : discrete

´
X
´
Y f(x, y)p(x, y)dxdy X, Y : continuous

Expectations can also be defined over a single variable

E [f(X, y)] =

8

>

<

>

:

P

x2X f(x, y)p(x) X : discrete

´
X f(x, y)p(x)dx X : continuous

where E [f(X, y)] is now a function of y.
We define the covariance function as

Cov[X,Y ] = E [(X � E [X]) (Y � E [Y ])]

= E [XY ]� E [X]E [Y ] ,

with Cov[X,X] = V [X] being the variance of the random variable X. Similarly, we define
a correlation function as

Corr[X,Y ] =

Cov[X,Y ]

p

V [X] · V [Y ]

,

which is simply a covariance function normalized by the product of standard deviations.
Both covariance and correlation functions have wide applicability in statistics, machine
learning, signal processing and many other disciplines. Several important expectations for
two random variables are listed in Table 1.2.

Example 6: Three tosses of a fair coin (yet again). Consider two random variables from
Examples 3 and 5, and calculate the expectation and variance for both X and Y . Then
calculate E [Y |X = 0].

We start by calculating E [X] = 0 · pX(0) + 1 · pX(1) =

1

2

. Similarly,

E [Y ] =

3

X

y=0

y · pY (y)

= pY (1) + 2pY (2) + 3pY (3)

=

3

2

The conditional expectation can be found as

E [Y |X = 0] =

3

X

y=0

y · pY |X(y|0)

= pY |X(1|0) + 2pY |X(2|0) + 3pY |X(3|0)
= 1
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COVARIANCE FOR MORE THAN TWO DIMENSIONS

X = [X1, . . . , Xd]

where p(y|x) = p(x, y)/p(x).
⇤

In many situations we need to analyze more than two random variables. A simple
two-dimensional summary of all pairwise covariance values involving d random variables
X

1

, X
2

, . . . , Xd is called the covariance matrix. More formally, the covariance matrix is
defined as

⌃ = [⌃ij ]
d
i,j=1

where

⌃ij = Cov[Xi, Xj ]

= E [(Xi � E [Xi]) (Xj � E [Xj ])]

with the full matrix written as

⌃ = Cov[X,X]

= E[(X � E[X])(X � E(X)

>
]

= E[XX

>
]� E[X]E[X]

>.

Here, the diagonal elements of a d ⇥ d covariance matrix are individual variance values for
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variables. The covariance matrix is symmetric and positive semi-definite, i.e., ⌃ ⌫ 0. We
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Properties of expectations
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that:
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2. Cov[X + Y ] = V[X] + V[Y ]

3. Cov[X,Y ] = 0.
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COVARIANCE FOR MORE THAN TWO DIMENSIONS
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SOME USEFUL PROPERTIES
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MULTIDIMENSIONAL PMF

Now record both commute time and number red lights

⌦ = {4, . . . , 14}⇥ {1, 2, 3, 4, 5}
PMF is normalized 2-d table (histogram) of occurrences
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EXAMPLE: SAMPLE AVERAGE IS UNBIASED ESTIMATOR

Obtain instances x1, . . . , xn

What can we say about the sample average?

This sample is random, so we consider i.i.d. random variables

X1, . . . , Xn

Reflects that we could have seen a di↵erent set of instances xi

E
"
1

n

nX

i=1

Xi

#
=

1

n

nX

i=1

E[Xi]

=
1

n

nX

i=1

µ

= µ

For any one sample x1, . . . , xn, unlikely that

1

n

nX

i=1

xi = µ


