Matrix factorization for
representation learning



Reminders/Comments

e Speed of learners:
- Sources of slowness: for-loops

In naive Bayes, for example, mostly have to loop through samples;
however, using vector addition within might speed things up

A more explicit Mini-project specification added to schedule
+ (Gives better feedback about marking

* Note: initial draft (due November 28) should be an almost complete
final draft—only thing that can be missing is some results

e | will provide you will practice questions for the final



Neural networks summary

Discussed basics, including

Basic architectures (fully connected layers with activations like
sigmoid, tanh, and relu)

How to choose the output loss

* i.e., still using the GLM formulation
Learning strategy: gradient descent (called back-propagation)
Basic regularization strategies

After reading week, will discuss more advanced topics (for fun)



How else can we learn the
representation?

e Discussed how learning can be done in simple ways even for
“fixed representations”

* e.g., learn the centres for radial basis function networks

 e.g., learn the bandwidths for Gaussian kernel

e Discussed less constrained representation learning setting
with neural networks

 though still quite constrained in our architecture, not just learning any
representation

e |n general, this problem has been tackled for a long time in the
field of unsupervised learning

* Where the goal is to analyze the underlying structure in the data



Representation learning

Neural network
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Using factorizations

e Many unsupervised learning and semi-supervised learning
problems can be formulated as factorizations

- PCA, kernel PCA, sparse coding, clustering, etc.

e Also provides an way to embed more complex items into a
shared space using co-occurence

* e.g., matrix completion for Netflix challenge

* e.g., word2vec



Intuition (factor analysis)

Imagine you have test scores from 10 subjects (topics), for 1000
students

As a psychologist, you hypothesize there are two kinds of
intelligence: verbal and mathematical

You cannot observe these factors (hidden variables)

Instead, you would like to see if these two factor explain the
data, where x is the vector of test scores of a student

Want to find: x =d1 h1 + d2 h2, where d1 and d2 are vectors h1
= verbal intelligence and h2 = mathematical intelligence

Having features h1 and h2 would give a compact, intuitive model



Matrix factorization
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It k < d, then we obtain dimensionality reduction (PCA)



Example: K-means
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Select cluster 1

Sample1 | 0.1 -3.1 24 1 O 0.2 -3.0 2.0 Mean cluster 1

1.2 0.1 -6.3 Mean cluster 2

2
Ix — ) 1(x in cluster i) d;||5 = [|x — hD||3
1=1

where h =[1 0lorh = [0 1] and D = [d; ; d3].



10

Dimensionality reduction

If set inner dimension k < d, obtain dimensionality reduction

Recall that the product of two matrices H and D has rank at
most the minimum rank of H and D

rank(HD) < min(rank(H), rank(D)

Even if d = 1000, if we set k = 2, then we get a reconstruction
of X that is only two-dimensional

« we could even visualize the data! How?
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Principal components analysis

e New representation is k left singular vectors that correspond to
k largest singular values

* i.e., for each sample x, the corresponding k-dimensional h is the rep

 Not the same as selecting k features, but rather projecting
features into lower-dimensional space

original data space
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Do these make useful features?

Before we were doing (huge) nonlinear expansions
PCA takes input features and reduces the dimension
This constrains the model, cannot be more powerful

Why could this be helpful?

+ Constraining the model is a form of regularization: could promote
generalization

- Sometimes have way too many features (e.g., someone overdid their
nonlinear expansion, redudant features), want to extract key
dimensions and remove redundancy and noise

- Can be helpful for simply analyzing the data, to choose better models



What if the data does not lie on
a plane?

e Can do non-linear dimensionality reduction

e Interestingly enough, many non-linear dimensionality
reduction techniques correspond to PCA, but first by taking a
nonlinear transformation of the data with a (specialized) kernel

- Isomap, Laplacian eigenmaps, LLE, etc.

e Can therefore extract a lower-dimensional representation on a
curved manifold, can better approximate input data in a low-
dimensional space

+ which would be hard to capture on a linear surface
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Isomap vs PCA

Data PCA

*Note: you don't need to know Isomap, just using it as an example



Sparse coding
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e For sparse representation, usually k > d

e Many entries in new representation are zero
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Sparse coding illustration

la,, ..., az4) = [0,0,..,0,0.8,0,..,0,0.3,0,..,0,0.5, 0]
(feature representation)

Slide credit: Andrew Ng Compact & easily interpretable
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Whiteboard

e We'll look at more examples of matrix factorizations later

e |[et’slook at now how to solve for these representations
- for some settings we will have a closed-form solution (e.g., PCA)

- for most setting, we will again have to derive an iterative update

e Finish up example with auto-encoder
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11 regularizer for sparse coding

e Why does the I1 regularizer give sparse representations?

* behaves like the 10 regularizer

e What about the |12 regularizer?
 the I2 reqularizer prefers to more uniformly squash values

» In fact, picking an I2 regularizer on both H and D ends up
corresponding to PCA (subspace representations) —> the interaction
of having an |12 on both seems to prefer to zero out entire rows of H
and columns of D (relaxed rank PCA)
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11 regularizer and |0 regularizer

d
lo(W) = Z 1(w; # 0) = # non-zero entries
1=1 d
b(w) = |uw;

e |1 regularizer in practice behaves similarly to 10 regularizer

o Before we used it for feature selection

* regularized weights w in Xw =y

e Here we are using it on a matrix, so again we are doing
feature selection, but separately for each sample
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For other settings

If there is no closed form solution, we will do as before:
compute the gradient and do gradient descent

Step 1: Compute gradient with respect to H, for fixed D,
update H = H - alpha grad_H

Step 2: Compute gradient with respect to D, for fixed H,
update D =D - alpha grad_D

Natural question: with neural networks, we updated both W1
and W2 simultaneously; why do we alternate between the two

variables here?
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Alternating methods

Alternating steepest descent: step in direction of gradient in
alternating fashion

- seems to have nice time, convergence trade-offs

Alternating minimization: solve for one variable, with the other
fixed, in alternating fashion

 each step corresponds to a batch gradient descent solution with one
of the variables fixed

* more traditional approach with well-known convergence properties

Which one you use likely depends on your setting; alternating
steepest descent is likely a better way in general, if there are
computation time restrictions

Note: this is related to EM, as we will see later (viterbi EM)
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What are the distributional
assumptions?

e |f try to factorize X into HD, making an assumption that p(x |
mu = hD) is Gaussian, with some fixed covariance

» weighted I12-loss gives a different covariance for each entry

e What if the data is binary (not Gaussian) or Poisson
distributed? (or some other distribution)

* again, we can use generalized linear models to generalize the
distribution p(x | hD) to exponential families

- See e.g., paper on exponential family PCA: “A generalization of
principal component analysis to the exponential family”, Collins et al.,
2002



