
Matrix factorization for
representation learning

Reminders/Comments

• Speed of learners:
• Sources of slowness: for-loops

• In naive Bayes, for example, mostly have to loop through samples;
however, using vector addition within might speed things up

• A more explicit Mini-project specification added to schedule
• Gives better feedback about marking

• Note: initial draft (due November 28) should be an almost complete
final draft—only thing that can be missing is some results

• I will provide you will practice questions for the final

2

Neural networks summary

• Discussed basics, including

• Basic architectures (fully connected layers with activations like
sigmoid, tanh, and relu)

• How to choose the output loss
• i.e., still using the GLM formulation

• Learning strategy: gradient descent (called back-propagation)

• Basic regularization strategies

• After reading week, will discuss more advanced topics (for fun)
3

How else can we learn the
representation?

• Discussed how learning can be done in simple ways even for
“fixed representations”
• e.g., learn the centres for radial basis function networks

• e.g., learn the bandwidths for Gaussian kernel

• Discussed less constrained representation learning setting
with neural networks
• though still quite constrained in our architecture, not just learning any

representation

• In general, this problem has been tackled for a long time in the
field of unsupervised learning
• where the goal is to analyze the underlying structure in the data

4

Representation learning

5

x
1

x
2

x
3

x
4

y

y

Hidden
layer

Input
layer

Output
layer

Figure 7.6: Supervised dictionary learning. Notice that the graphical model
looks similar to a neural network, but the arrows are directed out from the
hidden layer into the input layer (which is being factorized). An important
difference is that the hidden layer h is now treated explicitly as a variable
and is learned.

supervised dictionary learning, this procedure actually returns the global
minimum (see e.g. [2]). Therefore, this procedure appears to be a viable
strategy forward for these models.

One first computes the solution to H for the given data X,Y, with
D and W fixed. This involves computing the gradient w.r.t. to H, and
then performing gradient descent. Then, with H fixed, one computes the
solution to D and W, again by computing the gradient and descending
to a local minimum. This corresponds to a batch gradient descent, with
alternating minimization. The stochastic gradient descent for these models
is more complicated, and we will not address it here.

114

h
D W

x
1

x
2

x
3

x
4

y

y

Input
layer

Output
layer

Figure 7.2: Generalized linear model, such as logistic regression.

x
1

x
2

x
3

x
4

y

y

Hidden
layer

Input
layer

Output
layer

Figure 7.3: Standard neural network.

106

Neural network Dictionary Learning models

W(1) W(2)

W

(1) 2 Rk⇥d,W(2) 2 Rm⇥k

d = 4, k = 5,m = 2

ŷ = f2(W
(2)f1(W

(1)
x))

D 2 Rk⇥d,W 2 Rk⇥m

d = 4, k = 5,m = 2

ŷ = f2(hW)

h = arg min
h2R1⇥k

L
x

(hD,x)

or factor models

Using factorizations

• Many unsupervised learning and semi-supervised learning
problems can be formulated as factorizations
• PCA, kernel PCA, sparse coding, clustering, etc.

• Also provides an way to embed more complex items into a
shared space using co-occurence
• e.g., matrix completion for Netflix challenge

• e.g., word2vec

6

Intuition (factor analysis)

7

• Imagine you have test scores from 10 subjects (topics), for 1000
students

• As a psychologist, you hypothesize there are two kinds of
intelligence: verbal and mathematical

• You cannot observe these factors (hidden variables)

• Instead, you would like to see if these two factor explain the
data, where x is the vector of test scores of a student

• Want to find: x = d1 h1 + d2 h2, where d1 and d2 are vectors h1
= verbal intelligence and h2 = mathematical intelligence

• Having features h1 and h2 would give a compact, intuitive model

Matrix factorization

8

X ⇡

k

H k D

If k < d, then we obtain dimensionality reduction (PCA)

d

d

n n

Example: K-means

9

Xn

d

⇡ Hn

k

⇥
Dk

d

Figure 7.4: Matrix factorization of data matrix X 2 Rn⇥d.

1 0 0.1 -3.1 2.4 Sample 1

Select cluster 1

0.2 -3.0 2.0

1.2 0.1 -6.3

Mean cluster 1

Mean cluster 2

Figure 7.5: K-means clustering as a matrix factorization for data matrix X 2 Rn⇥d.

K-means clustering is an unsupervised learning problem to group data points into k
clusters by minimizing distances to the mean of each cluster. This problem is not usually
thought of as a representation learning approach, because the cluster number is not typically
used as a representation. However, we nonetheless start with k-means because it is an
intuitive example of how these unsupervised learning algorithms can be thought of as matrix
factorization. Further, the clustering approach can be seen as a representation learning
approach, because it is a learned discretization of the space. We will discuss this view of
k-means after discussing it as a matrix factorization.

Imagine that you have two clusters (k = 2), with data dimension d = 3. Let d
1

be the
mean for cluster 1 and d

2

the mean for cluster 2. The goal is to minimize the squared `
2

distance of each data point x to its cluster center

kx�
2

X

i=1

1 (x in cluster i)dik2
2

= kx� hDk2
2

where h = [1 0] or h = [0 1] and D = [d
1

; d
2

]. An example is depicted in Figure 7.5.
For a point x = [0.1 � 3.1 2.4], h = [1 0], meaning it is placed in cluster 1 with mean
d
1

= [0.2 � 3.0 2.0]. It would incur more error to place x in cluster 2 which has a mean
that is more dissimilar: d

2

= [1.2 0.1 � 6.3].
The overall minimization is defined across all the samples, giving loss

min

H2{0,1}n⇥k,1H=1

D2Rk⇥d

kX�HDk2F .

Different clusters vectors h are learned for each x, but the dictionary of means is shared
amongst all the data points. The specified optimization should pick dictionary D of means
that provides the smallest distances to points in the training dataset.

86

Xn

d

⇡ Hn

k

⇥
Dk

d

Figure 7.4: Matrix factorization of data matrix X 2 Rn⇥d.

1 0 0.1 -3.1 2.4 Sample 1

Select cluster 1

0.2 -3.0 2.0

1.2 0.1 -6.3

Mean cluster 1

Mean cluster 2

Figure 7.5: K-means clustering as a matrix factorization for data matrix X 2 Rn⇥d.

K-means clustering is an unsupervised learning problem to group data points into k
clusters by minimizing distances to the mean of each cluster. This problem is not usually
thought of as a representation learning approach, because the cluster number is not typically
used as a representation. However, we nonetheless start with k-means because it is an
intuitive example of how these unsupervised learning algorithms can be thought of as matrix
factorization. Further, the clustering approach can be seen as a representation learning
approach, because it is a learned discretization of the space. We will discuss this view of
k-means after discussing it as a matrix factorization.

Imagine that you have two clusters (k = 2), with data dimension d = 3. Let d
1

be the
mean for cluster 1 and d

2

the mean for cluster 2. The goal is to minimize the squared `
2

distance of each data point x to its cluster center

kx�
2

X

i=1

1 (x in cluster i)dik2
2

= kx� hDk2
2

where h = [1 0] or h = [0 1] and D = [d
1

; d
2

]. An example is depicted in Figure 7.5.
For a point x = [0.1 � 3.1 2.4], h = [1 0], meaning it is placed in cluster 1 with mean
d
1

= [0.2 � 3.0 2.0]. It would incur more error to place x in cluster 2 which has a mean
that is more dissimilar: d

2

= [1.2 0.1 � 6.3].
The overall minimization is defined across all the samples, giving loss

min

H2{0,1}n⇥k,1H=1

D2Rk⇥d

kX�HDk2F .

Different clusters vectors h are learned for each x, but the dictionary of means is shared
amongst all the data points. The specified optimization should pick dictionary D of means
that provides the smallest distances to points in the training dataset.

86

Xn

d

⇡ Hn

k

⇥
Dk

d

Figure 7.4: Matrix factorization of data matrix X 2 Rn⇥d.

1 0 0.1 -3.1 2.4 Sample 1

Select cluster 1

0.2 -3.0 2.0

1.2 0.1 -6.3

Mean cluster 1

Mean cluster 2

Figure 7.5: K-means clustering as a matrix factorization for data matrix X 2 Rn⇥d.

K-means clustering is an unsupervised learning problem to group data points into k
clusters by minimizing distances to the mean of each cluster. This problem is not usually
thought of as a representation learning approach, because the cluster number is not typically
used as a representation. However, we nonetheless start with k-means because it is an
intuitive example of how these unsupervised learning algorithms can be thought of as matrix
factorization. Further, the clustering approach can be seen as a representation learning
approach, because it is a learned discretization of the space. We will discuss this view of
k-means after discussing it as a matrix factorization.

Imagine that you have two clusters (k = 2), with data dimension d = 3. Let d
1

be the
mean for cluster 1 and d

2

the mean for cluster 2. The goal is to minimize the squared `
2

distance of each data point x to its cluster center

kx�
2

X

i=1

1 (x in cluster i)dik2
2

= kx� hDk2
2

where h = [1 0] or h = [0 1] and D = [d
1

; d
2

]. An example is depicted in Figure 7.5.
For a point x = [0.1 � 3.1 2.4], h = [1 0], meaning it is placed in cluster 1 with mean
d
1

= [0.2 � 3.0 2.0]. It would incur more error to place x in cluster 2 which has a mean
that is more dissimilar: d

2

= [1.2 0.1 � 6.3].
The overall minimization is defined across all the samples, giving loss

min

H2{0,1}n⇥k,1H=1

D2Rk⇥d

kX�HDk2F .

Different clusters vectors h are learned for each x, but the dictionary of means is shared
amongst all the data points. The specified optimization should pick dictionary D of means
that provides the smallest distances to points in the training dataset.

86

X ⇡

k

H k D

d

d

n n

Dimensionality reduction
• If set inner dimension k < d, obtain dimensionality reduction

• Recall that the product of two matrices H and D has rank at
most the minimum rank of H and D

• Even if d = 1000, if we set k = 2, then we get a reconstruction
of X that is only two-dimensional
• we could even visualize the data! How?

10

rank(HD)  min(rank(H), rank(D)

X ⇡

k

H k D

d

d

n n

Principal components analysis
• New representation is k left singular vectors that correspond to

k largest singular values
• i.e., for each sample x, the corresponding k-dimensional h is the rep

• Not the same as selecting k features, but rather projecting
features into lower-dimensional space

11 H

Do these make useful features?

• Before we were doing (huge) nonlinear expansions

• PCA takes input features and reduces the dimension

• This constrains the model, cannot be more powerful

• Why could this be helpful?
• Constraining the model is a form of regularization: could promote

generalization

• Sometimes have way too many features (e.g., someone overdid their
nonlinear expansion, redudant features), want to extract key
dimensions and remove redundancy and noise

• Can be helpful for simply analyzing the data, to choose better models
12

What if the data does not lie on
a plane?

• Can do non-linear dimensionality reduction

• Interestingly enough, many non-linear dimensionality
reduction techniques correspond to PCA, but first by taking a
nonlinear transformation of the data with a (specialized) kernel
• Isomap, Laplacian eigenmaps, LLE, etc.

• Can therefore extract a lower-dimensional representation on a
curved manifold, can better approximate input data in a low-
dimensional space
• which would be hard to capture on a linear surface

13

Isomap vs PCA

14

Data PCA ISOMAP

*Note: you don’t need to know Isomap, just using it as an example

Sparse coding

15

k

X ⇡ k DH
0 1 0 0 1 0 0.3 0 0 0

d
d

• For sparse representation, usually k > d

• Many entries in new representation are zero

n n

16

Whiteboard

• We’ll look at more examples of matrix factorizations later

• Let’s look at now how to solve for these representations
• for some settings we will have a closed-form solution (e.g., PCA)

• for most setting, we will again have to derive an iterative update

• Finish up example with auto-encoder

17

l1 regularizer for sparse coding

• Why does the l1 regularizer give sparse representations?
• behaves like the l0 regularizer

• What about the l2 regularizer?
• the l2 regularizer prefers to more uniformly squash values

• in fact, picking an l2 regularizer on both H and D ends up
corresponding to PCA (subspace representations) —> the interaction
of having an l2 on both seems to prefer to zero out entire rows of H
and columns of D (relaxed rank PCA)

18

l1 regularizer and l0 regularizer

• l1 regularizer in practice behaves similarly to l0 regularizer

• Before we used it for feature selection
• regularized weights w in Xw = y

• Here we are using it on a matrix, so again we are doing
feature selection, but separately for each sample

19

`0(w) =

dX

i=1

1(wi 6= 0) = # non-zero entries

`1(w) =
dX

i=1

|wi|

kHk1,1 =
kX

i=1

tX

j=1

|Hij |

For other settings

• If there is no closed form solution, we will do as before:
compute the gradient and do gradient descent

• Step 1: Compute gradient with respect to H, for fixed D,
update H = H - alpha grad_H

• Step 2: Compute gradient with respect to D, for fixed H,
update D = D - alpha grad_D

• Natural question: with neural networks, we updated both W1
and W2 simultaneously; why do we alternate between the two
variables here?

20

Alternating methods
• Alternating steepest descent: step in direction of gradient in

alternating fashion
• seems to have nice time, convergence trade-offs

• Alternating minimization: solve for one variable, with the other
fixed, in alternating fashion
• each step corresponds to a batch gradient descent solution with one

of the variables fixed

• more traditional approach with well-known convergence properties

• Which one you use likely depends on your setting; alternating
steepest descent is likely a better way in general, if there are
computation time restrictions

• Note: this is related to EM, as we will see later (viterbi EM)21

What are the distributional
assumptions?

• If try to factorize X into HD, making an assumption that p(x |
mu = hD) is Gaussian, with some fixed covariance
• weighted l2-loss gives a different covariance for each entry

• What if the data is binary (not Gaussian) or Poisson
distributed? (or some other distribution)
• again, we can use generalized linear models to generalize the

distribution p(x | hD) to exponential families

• See e.g., paper on exponential family PCA: “A generalization of
principal component analysis to the exponential family”, Collins et al.,
2002

22

