Matrix factorization for representation learning

Reminders/Comments

- Speed of learners:
- Sources of slowness: for-loops
- In naive Bayes, for example, mostly have to loop through samples; however, using vector addition within might speed things up
- A more explicit Mini-project specification added to schedule
- Gives better feedback about marking
- Note: initial draft (due November 28) should be an almost complete final draft-only thing that can be missing is some results
- I will provide you will practice questions for the final

Neural networks summary

- Discussed basics, including
- Basic architectures (fully connected layers with activations like sigmoid, tanh, and relu)
- How to choose the output loss
- i.e., still using the GLM formulation
- Learning strategy: gradient descent (called back-propagation)
- Basic regularization strategies
- After reading week, will discuss more advanced topics (for fun)

How else can we learn the representation?

- Discussed how learning can be done in simple ways even for "fixed representations"
- e.g., learn the centres for radial basis function networks
- e.g., learn the bandwidths for Gaussian kernel
- Discussed less constrained representation learning setting with neural networks
- though still quite constrained in our architecture, not just learning any representation
- In general, this problem has been tackled for a long time in the field of unsupervised learning
- where the goal is to analyze the underlying structure in the data

Representation learning

Neural network

$\mathbf{W}^{(1)} \in \mathbb{R}^{k \times d}, \mathbf{W}^{(2)} \in \mathbb{R}^{m \times k}$

$$
d=4, k=5, m=2
$$

$$
\hat{\mathbf{y}}=f_{2}\left(\mathbf{W}^{(2)} f_{1}\left(\mathbf{W}^{(1)} \mathbf{x}\right)\right)
$$

Dictionary Learning models

$\mathbf{D} \in \mathbb{R}^{k \times d}, \mathbf{W} \in \mathbb{R}^{k \times m}$
$d=4, k=5, m=2$
$\hat{\mathbf{y}}=f_{2}(\mathbf{h} \mathbf{W})$
$\mathbf{h}=\arg \min _{\mathbf{h} \in \mathbb{R}^{1 \times k}} L_{x}(\mathbf{h D}, \mathbf{x})$

Using factorizations

- Many unsupervised learning and semi-supervised learning problems can be formulated as factorizations
- PCA, kernel PCA, sparse coding, clustering, etc.
- Also provides an way to embed more complex items into a shared space using co-occurence
- e.g., matrix completion for Netflix challenge
- e.g., word2vec

Intuition (factor analysis)

- Imagine you have test scores from 10 subjects (topics), for 1000 students
- As a psychologist, you hypothesize there are two kinds of intelligence: verbal and mathematical
- You cannot observe these factors (hidden variables)
- Instead, you would like to see if these two factor explain the data, where x is the vector of test scores of a student
- Want to find: $x=d 1 h 1+d 2 h 2$, where $d 1$ and $d 2$ are vectors $h 1$ = verbal intelligence and h2 = mathematical intelligence
- Having features h1 and h2 would give a compact, intuitive model

Matrix factorization

If $k<d$, then we obtain dimensionality reduction (PCA)

Example: K-means

Select cluster 1

where $\mathbf{h}=\left[\begin{array}{ll}1 & 0\end{array}\right]$ or $\mathbf{h}=\left[\begin{array}{ll}0 & 1\end{array}\right]$ and $\mathbf{D}=\left[\mathbf{d}_{1} ; \mathbf{d}_{2}\right]$.

Dimensionality reduction

- If set inner dimension $\mathrm{k}<\mathrm{d}$, obtain dimensionality reduction
- Recall that the product of two matrices H and D has rank at most the minimum rank of H and D

$$
\operatorname{rank}(\mathbf{H D}) \leq \min (\operatorname{rank}(\mathbf{H}), \operatorname{rank}(\mathbf{D})
$$

- Even if $d=1000$, if we set $k=2$, then we get a reconstruction of X that is only two-dimensional
- we could even visualize the data! How?

Principal components analysis

- New representation is k left singular vectors that correspond to k largest singular values
- i.e., for each sample x , the corresponding k -dimensional h is the rep
- Not the same as selecting k features, but rather projecting features into lower-dimensional space
original data space

Do these make useful features?

- Before we were doing (huge) nonlinear expansions
- PCA takes input features and reduces the dimension
- This constrains the model, cannot be more powerful
- Why could this be helpful?
- Constraining the model is a form of regularization: could promote generalization
- Sometimes have way too many features (e.g., someone overdid their nonlinear expansion, redudant features), want to extract key dimensions and remove redundancy and noise
- Can be helpful for simply analyzing the data, to choose better models

What if the data does not lie on a plane?

- Can do non-linear dimensionality reduction
- Interestingly enough, many non-linear dimensionality reduction techniques correspond to PCA, but first by taking a nonlinear transformation of the data with a (specialized) kernel
- Isomap, Laplacian eigenmaps, LLE, etc.
- Can therefore extract a lower-dimensional representation on a curved manifold, can better approximate input data in a lowdimensional space
- which would be hard to capture on a linear surface

Isomap vs PCA

*Note: you don't need to know Isomap, just using it as an example

Sparse coding

- For sparse representation, usually $k>d$
- Many entries in new representation are zero

Sparse coding illustration

$\left[a_{1}, \ldots, a_{64}\right]=[0,0, \ldots, 0, \mathbf{0 . 8}, 0, \ldots, 0, \mathbf{0 . 3}, 0, \ldots, 0, \mathbf{0 . 5}, 0]$
(feature representation)

Whiteboard

- We'll look at more examples of matrix factorizations later
- Let's look at now how to solve for these representations
- for some settings we will have a closed-form solution (e.g., PCA)
- for most setting, we will again have to derive an iterative update
- Finish up example with auto-encoder

11 regularizer for sparse coding

- Why does the 11 regularizer give sparse representations?
- behaves like the 10 regularizer
- What about the I 2 regularizer?
- the I 2 regularizer prefers to more uniformly squash values
- in fact, picking an I2 regularizer on both H and D ends up corresponding to PCA (subspace representations) $->$ the interaction of having an I 2 on both seems to prefer to zero out entire rows of H and columns of D (relaxed rank PCA)

I1 regularizer and IO regularizer

$$
\begin{aligned}
\ell_{0}(\mathbf{w})= & \sum_{i=1}^{d} 1\left(w_{i} \neq 0\right)=\# \text { non-zero entries } \\
& \ell_{1}(\mathbf{w})=\sum_{i=1}^{d}\left|w_{i}\right|
\end{aligned}
$$

- I1 regularizer in practice behaves similarly to IO regularizer
- Before we used it for feature selection
- regularized weights w in $\mathrm{Xw}=\mathrm{y}$
- Here we are using it on a matrix, so again we are doing feature selection, but separately for each sample

$$
\|\mathbf{H}\|_{1,1}=\sum_{i=1}^{k} \sum_{j=1}^{t}\left|H_{i j}\right|
$$

For other settings

- If there is no closed form solution, we will do as before: compute the gradient and do gradient descent
- Step 1: Compute gradient with respect to H, for fixed D, update $\mathrm{H}=\mathrm{H}$ - alpha grad_H
- Step 2: Compute gradient with respect to D, for fixed H, update D = D - alpha grad_D
- Natural question: with neural networks, we updated both W1 and W2 simultaneously; why do we alternate between the two variables here?

Alternating methods

- Alternating steepest descent: step in direction of gradient in alternating fashion
- seems to have nice time, convergence trade-offs
- Alternating minimization: solve for one variable, with the other fixed, in alternating fashion
- each step corresponds to a batch gradient descent solution with one of the variables fixed
- more traditional approach with well-known convergence properties
- Which one you use likely depends on your setting; alternating steepest descent is likely a better way in general, if there are computation time restrictions
- Note: this is related to EM, as we will see later (viterbi EM)

What are the distributional assumptions?

- If try to factorize X into HD, making an assumption that $\mathrm{p}(\mathrm{x}$ I $\mathrm{mu}=\mathrm{hD}$) is Gaussian, with some fixed covariance
- weighted 12 -loss gives a different covariance for each entry
- What if the data is binary (not Gaussian) or Poisson distributed? (or some other distribution)
- again, we can use generalized linear models to generalize the distribution $\mathrm{p}(\mathrm{x} / \mathrm{hD})$ to exponential families
- See e.g., paper on exponential family PCA: "A generalization of principal component analysis to the exponential family", Collins et al., 2002

