
Neural networks



Comments
• Assignment 3 code released

• implement classification algorithms

• use kernels for census dataset

• Thought questions 3 due this week

• Mini-project: hopefully you have started
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Example: logistic regression 
versus neural network

• Both try to predict p(y = 1 | x)

• Logistic regression learns W such that

• Neural network learns W1 and W2 such that

3

and y 2 {0, 1}. If y 2 R, we use linear regression for this last layer and so learn weights
w(2) 2 R2 such that hw(2) approximates the true output y. If y 2 {0, 1}, we use logistic
regression for this last layer and so learn weights w(2) 2 R2 such that �(hw(2)

) approximates
the true output y. ⇤

Now we consider the more general case with any d, k
1

,m. To provide some intuition
for this more general setting, we will begin with one hidden layer, for the sigmoid transfer
function and cross-entropy output loss. For logistic regression we estimated W 2 Rd⇥m,
with f(xW) = �(xW) ⇡ y. We will predict an output vector y 2 Rm, because it will make
later generalizations more clear-cut and make notation for the weights in each layer more
uniform. When we add a hidden layer, we have two parameter matrices W(2) 2 Rd⇥k1 and
W(1) 2 Rk1⇥m, where k

1

is the dimension of the hidden layer

h = �(W(2)x) =
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where the sigmoid function is applied to each entry in xW(2) and hW(1). This hidden layer
is the new set of features and again you will do the regular logistic regression optimization
to learn weights on h:

p(y = 1|x) = �(hW(1)

) = �(�(xW(2)

)W(1)

).

With the probabilistic model and parameter specified, we now need to derive an algo-
rithm to obtain those parameters. As before, we take a maximum likelihood approach and
derive gradient descent updates. This composition of transfers seems to complicate matters,
but we can still take the gradient w.r.t. our parameters. We simply have more parameters
now: W(2) 2 Rk1⇥d,W(1) 2 R1⇥k1 . Once we have the gradient w.r.t. each parameter ma-
trix, we simply take a step in the direction of the negative of the gradient, as usual. The
gradients for these parameters share information; for computational efficiency, the gradient
is computed first for W(1), and duplicate gradient information sent back to compute the
gradient for W(2). This algorithm is typically called back propagation, which we describe
next.

In general, we can compute the gradient for any number of hidden layers. Denote
each differentiable transfer function f

1

, . . . , fH , ordered with f
1

as the output transfer, and
k
1

, . . . , kH�1

as the hidden dimensions with H � 1 hidden layers. Then the output from the
neural network is

f
1
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f
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where W(1) 2 Rk1⇥m, W(2) 2 Rk2⇥k1 , . . . ,W(H) 2 Rd⇥kH�1 .

Backpropagation algorithm

We will start by deriving back propagation for two layers; the extension to multiple layers
will be more clear given this derivation. Due to the size of the network, we will often learn
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= p(y = 1|x)



No representation learning vs. 
neural network
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What are the representational 
capabilities of neural nets? 

• Single hidden-layer neural networks with sigmoid transfer can 
represent any continuous function on a bounded space within 
epsilon accuracy, for a large enough number of hidden nodes
• see Cybenko, 1989: “Approximation by Superpositions of a Sigmoidal 

Function”

5

x
1

x
2

x
3

x
4

y

y

Input
layer

Output
layer

Figure 7.2: Generalized linear model, such as logistic regression.

x
1

x
2

x
3

x
4

y

y

Hidden
layer

Input
layer

Output
layer

Figure 7.3: Standard neural network.

106

W(1)

W(2)

h

(2) = f2(xW
(2))
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Nonlinear decision surface
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* from http://cs231n.github.io/neural-networks-1/; see that page for a nice discussion on neural nets

http://cs231n.github.io/neural-networks-1/


How do we learn the parameters 
to the neural network?

• In linear regression and logistic regression, learned 
parameters by specifying an objective and minimizing using 
gradient descent

• We do the exact same thing with neural networks; the only 
difference is that our function class is more complex

• Need to derive a gradient descent update for W1 and W2
• reasonably straightforward, indexing just a bit of a pain
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Example for p(y|x) Bernoulli
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Example 15: Let p(y = 1|x) be a Bernoulli distribution, with f
1

and f
2

both sigmoid
functions. The loss is the cross-entropy. We can derive the two-layer update rule with these
settings, by plugging-in above.
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@L(ŷ, y)
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The update simply consists of stepping in the direction of these gradients, as is usual for
gradient descent. We start with some initial W(1) and W(2) (say filled with random values),
and then apply the gradient descent rules with these gradients. ⇤

7.2.2 Unsupervised learning and matrix factorization

Another strategy to obtaining a new representation is through matrix factorization. The
data matrix X is factorized into a dictionary D and a basis or new representation H (see
Figure 7.4). In fact, many unsupervised learning algorithms (e.g., dimensionality reduction,
sparse coding) and semi-supervised learning algorithms (e.g., supervised dictionary learning)
can actually be formulated as matrix factorizations. We will look at k-means clustering
and principal components analysis as an example. The remaining algorithms are simply
summarized in the below table. This general approach to obtaining a new representation
using factorization is called dictionary learning.
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Forward propagation

• First have to compute all the required components to produce 
the prediction yhat, so that we can measure the error

• Forward propagation simply means starting from inputs to 
compute hidden layers to then finally output a prediction
• i.e., simply means evaluating the function f(x) that is the NN

• A fancy name for a straightforward concept
• naming things is useful, but can obfuscate simple concepts
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Backward propagation

• Once have output prediction yhat (and all intermediate layers), 
can now compute gradient

• The gradient computed for the weights on the output layer 
contains some shared components with the weights for the 
hidden layer 

• This shared component is computed for output weights W1

• Instead of recomputing it for W2, that work is passed to the 
computation of the gradient of W2 (propagated backwards) 

10



Example for Bernoulli (cont)
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Example 15: Let p(y = 1|x) be a Bernoulli distribution, with f
1

and f
2

both sigmoid
functions. The loss is the cross-entropy. We can derive the two-layer update rule with these
settings, by plugging-in above.
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Now we can compute the backpropagation update by first propagating forward
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The update simply consists of stepping in the direction of these gradients, as is usual for
gradient descent. We start with some initial W(1) and W(2) (say filled with random values),
and then apply the gradient descent rules with these gradients. ⇤

7.2.2 Unsupervised learning and matrix factorization

Another strategy to obtaining a new representation is through matrix factorization. The
data matrix X is factorized into a dictionary D and a basis or new representation H (see
Figure 7.4). In fact, many unsupervised learning algorithms (e.g., dimensionality reduction,
sparse coding) and semi-supervised learning algorithms (e.g., supervised dictionary learning)
can actually be formulated as matrix factorizations. We will look at k-means clustering
and principal components analysis as an example. The remaining algorithms are simply
summarized in the below table. This general approach to obtaining a new representation
using factorization is called dictionary learning.
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Whiteboard

• Derivation of back-propagation for two layers

• Exercise: single hidden-layer with no activation function

• Exercise: what if not fully connected?

• Disclaimer: understanding NNs, what works and doesn’t, is an 
in-progress research question; some of what I tell you will be 
hypotheses, and not as concrete as some of the previous 
foundations of ML
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Comments (Nov 2)
• Thought question deadline extended by 2 days

• Peng posted a few specifications for Assignment 3

• If you’d like, grab some Halloween candy at the front
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Recap

• Neural networks let us learn a nonlinear representation phi(x)
• instead of using a fixed representation, like kernels

• We derived a gradient descent update to learn these reps

• What can NNs really learn?

• How do we optimize them in practice?
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Simple example of 
representational capabilities: XOR

15 *see nice video Neural Networks 6: solving XOR with a hidden layer 
: https://www.youtube.com/watch?v=kNPGXgzxoHw



One layer can act like a filter
• Dot-product with input x, and a weight vector w, can 

emphasize or filter parts of x
• e.g., imagine x is an image, and w is zero everywhere except one 

small patch in the corner. It will pick out the magnitude of pixels in 
that small patch

16 *awesome overview: http://cs231n.github.io/convolutional-networks/



Maximum likelihood problem
• The goal is to still to find parameters (i.e., all the weights in the 

network) that maximize the likelihood of the data

• What is p(y | x), for our NN?
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E[Y |x] = NN(x) = f1(f2(xW
(2)
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(1)
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e.g., mean of Gaussian, variance �

2
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e.g., Bernoulli parameter p(y = 1|x) = E[Y |x]
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2

Bernoulli:
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Gradient descent procedure for 
NNs

• Compute delta for all nodes in the last layer

• This delta gets passed back to the nodes on previous layer 
(that influenced it), weighted by the weights leading into the 
node with delta

18

Example 15: Let p(y = 1|x) be a Bernoulli distribution, with f
1

and f
2

both sigmoid
functions. The loss is the cross-entropy. We can derive the two-layer update rule with these
settings, by plugging-in above.
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The update simply consists of stepping in the direction of these gradients, as is usual for
gradient descent. We start with some initial W(1) and W(2) (say filled with random values),
and then apply the gradient descent rules with these gradients. ⇤

7.2.2 Unsupervised learning and matrix factorization

Another strategy to obtaining a new representation is through matrix factorization. The
data matrix X is factorized into a dictionary D and a basis or new representation H (see
Figure 7.4). In fact, many unsupervised learning algorithms (e.g., dimensionality reduction,
sparse coding) and semi-supervised learning algorithms (e.g., supervised dictionary learning)
can actually be formulated as matrix factorizations. We will look at k-means clustering
and principal components analysis as an example. The remaining algorithms are simply
summarized in the below table. This general approach to obtaining a new representation
using factorization is called dictionary learning.
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What if removed one connection 
(i.e., not fully connected)?
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The update simply consists of stepping in the direction of these gradients, as is usual for
gradient descent. We start with some initial W(1) and W(2) (say filled with random values),
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sparse coding) and semi-supervised learning algorithms (e.g., supervised dictionary learning)
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and principal components analysis as an example. The remaining algorithms are simply
summarized in the below table. This general approach to obtaining a new representation
using factorization is called dictionary learning.
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Multi-layer neural network
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* from http://cs231n.github.io/neural-networks-1/; see that page for a nice discussion on neural nets

W(1)
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W(3)

h(2)
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(2) = f3(xW
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(1) = f2(h
(2)
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ŷ = f1(h
(1)

W

(1))h(1)

What is phi(x) here?

http://cs231n.github.io/neural-networks-1/


What about more layers?
• Can consider the first N-1 layers to learn the new 

representation of x: phi(x)
• this new representation is informed by prediction accuracy, unlike a 

fixed representation

• The last layer learns a generalized linear model on phi(x) to 
predict E[Y | x]: f(< phi(x), w > )

• As with previous generalizations, this last layer can:
• use any generalized linear model transfer and loss

• can have multivariate output y

• can use regularizers

• can use different costs per sample
21



Theory to support depth?

• Mostly the utility of more layers is an empirical observation; 
not a lot of theory to support the importance of depth

• Depth has shown to be particularly important for convolutional 
neural networks
• each convolutional layer summarizes the previous layer, providing a 

hierarchical structure where depth is intuitively useful

• See for example: “Do Deep Nets Really Need to be Deep?” 
https://arxiv.org/abs/1312.6184

22

https://arxiv.org/abs/1312.6184


Exercise: bias unit

• Assume we pick a sigmoid activation

• What does it mean to add a bias unit to the input?
• can shift the sigmoid curve left or right, just like before, for the first 

hidden layer

• What does it mean to add a bias unit for an interior layer?
• can shift the sigmoid curve left or right for the next layer, without 

having to rely on previous layer to carefully adjust

• What does it mean to add a bias unit to the last layer (the last 
hidden layer before predicting y)?
• yup, you guessed it, still the same reason

23



Example of hidden layers in a 
deeper network

24 *awesome overview: http://cs231n.github.io/convolutional-networks/



Structural choices

• The number of hidden layers 

• The number of hidden nodes in each layer

• The activation functions

• How connected each layer is (maybe not fully connected)

• …

• The network structure simply indicates which variables 
influence other variables (contribute to their construction); can 
imagine many different architectures

25



Tanh and rectified linear
• Two more popular transfers are tanh and rectified linear

• Tanh is balanced around 0, which seems to help learning 
• usually preferred to sigmoid

• Rectified linear

• Binary threshold function (perceptron): less used, 
• some notes for this approach: http://www.cs.indiana.edu/~predrag/

classes/2015springb555/9.pdf26

tanh(✓) =
exp(✓)� exp(�✓)

exp(✓) + exp(�✓)

http://www.cs.indiana.edu/~predrag/classes/2015springb555/9.pdf
http://www.cs.indiana.edu/~predrag/classes/2015springb555/9.pdf


Rectified linear unit (ReLU)
• Rectified(x) = max(0, x)

• Non-differentiable point at 0

• Commonly gradient is 0 for x <= 0, else 1

• Softplus(x) = ln(1+e^{x})

• Recall our variable is

• Common strategy: still use sigmoid (or tanh) with cross-
entropy in the last output layer, and use rectified linear units in 
the interior
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Exercise: changing from 
sigmoid to tanh

• Let’s revisit the two-layer update.

• How does it change if we instead use f_2 = tanh, for the 
activation on the first layer?
• recall: the derivative of tanh(theta) is 1-tanh^2(theta)
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Example 19: Let p(y = 1|x) be a Bernoulli distribution, with f
1

and f
2

both sigmoid
functions. The loss is the cross-entropy. We can derive the two-layer update rule with these
settings, by plugging-in above.

L(ŷ, y) = ≠y log(ŷ) ≠ (1 ≠ y) log(1 ≠ ŷ) Û cross-entropy
ˆL(ŷ, y)
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Now we can compute the backpropagation update by first propagating forward

h = ‡(xW(2))
ŷ = ‡(hW(1))
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Example 15: Let p(y = 1|x) be a Bernoulli distribution, with f
1

and f
2

both sigmoid
functions. The loss is the cross-entropy. We can derive the two-layer update rule with these
settings, by plugging-in above.
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The update simply consists of stepping in the direction of these gradients, as is usual for
gradient descent. We start with some initial W(1) and W(2) (say filled with random values),
and then apply the gradient descent rules with these gradients. ⇤

7.2.2 Unsupervised learning and matrix factorization

Another strategy to obtaining a new representation is through matrix factorization. The
data matrix X is factorized into a dictionary D and a basis or new representation H (see
Figure 7.4). In fact, many unsupervised learning algorithms (e.g., dimensionality reduction,
sparse coding) and semi-supervised learning algorithms (e.g., supervised dictionary learning)
can actually be formulated as matrix factorizations. We will look at k-means clustering
and principal components analysis as an example. The remaining algorithms are simply
summarized in the below table. This general approach to obtaining a new representation
using factorization is called dictionary learning.
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Exercise: changing from 
sigmoid to ReLU

• Let’s revisit the two-layer update.

• How does it change if we instead use f_2 = relu, for the 
activation on the first layer?
• recall: the derivative of relu(theta) = max(0, theta) is 1 or 0
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The update simply consists of stepping in the direction of these gradients, as is usual for
gradient descent. We start with some initial W(1) and W(2) (say filled with random values),
and then apply the gradient descent rules with these gradients. ⇤

7.2.2 Unsupervised learning and matrix factorization

Another strategy to obtaining a new representation is through matrix factorization. The
data matrix X is factorized into a dictionary D and a basis or new representation H (see
Figure 7.4). In fact, many unsupervised learning algorithms (e.g., dimensionality reduction,
sparse coding) and semi-supervised learning algorithms (e.g., supervised dictionary learning)
can actually be formulated as matrix factorizations. We will look at k-means clustering
and principal components analysis as an example. The remaining algorithms are simply
summarized in the below table. This general approach to obtaining a new representation
using factorization is called dictionary learning.
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Why so careful with l1 and not 
ReLU?

• For L1 (Lasso) used proximal operators for non-differentiable 
function to ensure convergence

• Why so uncareful with ReLUs?

• One answer: it seems to work

• Hypothesis: if gradient pushing input to ReLU to zero, then 
overshooting non-differentiable point ok —> the output value 
is still 0!
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How do we select the loss 
function and activations?

• How do we select the loss function?
• Loss is only defined for the last layer —> we use generalized linear 

models

• How do we select activations?
• activation on last layer determined by GLM

• for interior activations, its an art to decide what to use

31



Optimization choices

• Derived gradient descent update for two-layers
• and natural extension to more layers

• The objective is still (mostly) smooth, but is no longer convex; 
is this a problem?
• Can still use gradient descent approaches, but might get stuck in 

local minima or saddle points —> the chosen optimization 
approaches care more about getting out of such solutions

• The initialization matters more (why?)
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Exercise: Updating with new 
samples

• How might we incorporate new samples, into our learned 
neural network model?

• What if the world is non-stationary, say the distribution drifts?
• Do you expect this to be more or less reactive than updating with new 

samples in logistic regression?
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Initialization

• One of the key aspects that have made NNs work is better 
initialization strategies

• Imagine could initialize really close to the true solution
• wouldn’t that be great! We would just need to iterate a small number 

of steps and be done

• In general, where we initialize from can significantly impact the 
number of steps and the final solution
• initialization affects how close we are to a good solution

• initializations affects the function surface in that local region; flat 
function surfaces can be bad
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Modern initialization strategies

• Maintain consistent variance of gradients throughout the 
network, to ensure that gradients do not go to zero in earlier 
layers
• if nodes become zero, they start to filter some of the gradient that is 

being passed backwards 

• See the paper: “Understanding the difficulty of training deep 
feedforward neural networks”, Glorot and Bengio 
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Impact of initialization

36 *image from https://intoli.com/blog/neural-network-initialization/



Gradient descent approaches

• Commonly use stochastic gradient descent (SGD) or mini-
batch SGD, for a relatively small mini-batch size of say 32

• Mini-batch: update weights using an averaged gradient over a 
subset of 32 samples (a mini batch B)

• Approach: for one epoch (iterating over the dataset once)
• SGD with one sample: 

• SGD with mini-batch:

• If n = 1000, mini-batch b = 10, how many iterations for SGD 
and mini-batch SGD within one epoch?
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Why SGD? Why not batch 
gradient descent?

• Same reasons as before: computationally wasteful to estimate 
gradient for the entire dataset, only improves direction minorly 
over a sample average of the gradients for a much smaller 
mini-batch

• SGD can more easily jump past saddle points in the objective

• SGD helps prevent overfitting, since it does not converge 
exactly to minimizers (since we never set step sizes that 
carefully)
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Selecting step sizes

• Can select a single stepsize for the entire network
• That’s a hard parameter to tune

• Much better to select an individual stepsize for each parameter
• a vector stepsizes

• Quasi-second order algorithms also work for NNs
• Adadelta

• Adam
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Exercise: overfitting

• Imagine someone gave you a kernel representation with 1000 
prototypes
• representation is likely sparse: only a small number of features in 

phi(x) are active (the rest are near zero)

• Imagine you learned an NN, with one hidden layer of size 
1000

• Which do you think might be more prone to overfitting?

• Is it just about number of parameters? What if use a linear 
activation function?
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Strategies to avoid overfitting

• Early stopping
• keep a validation set, a subset of the training set

• after each epoch, check if accuracy has levelled off on the validation 
set; if so, stop training

• uses test accuracy rather than checking the objective is minimized

• Dropout

• Other regularizers
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Whiteboard

• Linear neural network

• Auto-encoder

• Matrix factorization
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