Neural networks

3 hidden neurons

6 hidden neurons

20 hidden neurons

nonnenents

- Assignment 3 code released
- implement classification algorithms
- use kernels for census dataset
- Thought questions 3 due this week
- Mini-project: hopefully you have started

Example: logistic regression versus neural network

- Both try to predict $p(y=1 \mid x)$
- Logistic regression learns W such that

$$
f(\mathbf{x} \mathbf{W})=\sigma(\mathbf{x} \mathbf{W})=p(y=1 \mid \mathbf{x})
$$

- Neural network learns W1 and W2 such that

$$
p(y=1 \mid \mathbf{x})=\sigma\left(\mathbf{h} \mathbf{W}^{(1)}\right)=\sigma\left(\sigma\left(\mathbf{x} \mathbf{W}^{(2)}\right) \mathbf{W}^{(1)}\right) .
$$

No representation learning vs. neural network

GLM
(e.g. logistic regression)

Two-layer neural network

What are the representational capabilities of neural nets?

- Single hidden-layer neural networks with sigmoid transfer can represent any continuous function on a bounded space within epsilon accuracy, for a large enough number of hidden nodes
- see Cybenko, 1989: "Approximation by Superpositions of a Sigmoidal Function"

Nonlinear decision surface

3 hidden neurons

6 hidden neurons

20 hidden neurons

[^0]
How do we learn the parameters to the neural network?

- In linear regression and logistic regression, learned parameters by specifying an objective and minimizing using gradient descent
- We do the exact same thing with neural networks; the only difference is that our function class is more complex
- Need to derive a gradient descent update for W1 and W2
- reasonably straightforward, indexing just a bit of a pain

Example for p(ylx) Bernoulli

$$
L(\hat{y}, y)=-y \log (\hat{y})-(1-y) \log (1-\hat{y})
$$

Forward propagation

- First have to compute all the required components to produce the prediction yhat, so that we can measure the error
- Forward propagation simply means starting from inputs to compute hidden layers to then finally output a prediction
- i.e., simply means evaluating the function $f(x)$ that is the NN
- A fancy name for a straightforward concept
- naming things is useful, but can obfuscate simple concepts

Backward propagation

- Once have output prediction yhat (and all intermediate layers), can now compute gradient
- The gradient computed for the weights on the output layer contains some shared components with the weights for the hidden layer
- This shared component is computed for output weights W1
- Instead of recomputing it for W2, that work is passed to the computation of the gradient of W2 (propagated backwards)

Example for Bernoulli (cont)

$$
\begin{aligned}
& \boldsymbol{\delta}_{k}^{(1)}=\hat{y}_{k}-y_{k} \\
& \frac{\partial}{\partial \mathbf{W}_{j k}^{(1)}}=\boldsymbol{\delta}_{k}^{(1)} \mathbf{h}_{j} \\
& \boldsymbol{\delta}_{j}^{(2)}=\left(\mathbf{W}_{j:}^{(1)} \boldsymbol{\delta}^{(1)}\right) \mathbf{h}_{j}\left(1-\mathbf{h}_{j}\right) \\
& \frac{\partial}{\partial \mathbf{W}_{i j}^{(2)}}=\boldsymbol{\delta}_{j}^{(2)} \mathbf{x}_{i} \\
& \mathbf{W}_{j k}^{(1)} \leftarrow \mathbf{W}_{j k}^{(1)}-\alpha \frac{\partial}{\mathbf{W}_{j k}^{(1)}} \\
& \longrightarrow \quad \mathbf{W}_{i j}^{(2)} \leftarrow \mathbf{W}_{i j}^{(2)}-\alpha \frac{\partial}{\mathbf{W}_{i j}^{(2)}}
\end{aligned}
$$

Whiteboard

- Derivation of back-propagation for two layers
- Exercise: single hidden-layer with no activation function
- Exercise: what if not fully connected?
- Disclaimer: understanding NNs, what works and doesn't, is an in-progress research question; some of what I tell you will be hypotheses, and not as concrete as some of the previous foundations of ML

Comments (Nov 2)

- Thought question deadline extended by 2 days
- Peng posted a few specifications for Assignment 3
- If you'd like, grab some Halloween candy at the front

Recap

- Neural networks let us learn a nonlinear representation phi(x)
- instead of using a fixed representation, like kernels
- We derived a gradient descent update to learn these reps
- What can NNs really learn?
- How do we optimize them in practice?

Simple example of representational capabilities: XOR

Linear classifiers

$$
\begin{array}{lll}
\sigma\left(20 * 0+20^{*} 0-10\right) \approx 0 & \sigma\left(-20^{*} 0-20^{*} 0+30\right) \approx 1 & \sigma\left(20 * 0+20^{*} 1-30\right) \approx 0 \\
\sigma\left(20^{*} 1+20^{*} 1-10\right) \approx 1 & \sigma\left(-20^{*} 1-20^{*} 1+30\right) \approx 0 & \sigma\left(20^{*}+20^{*} 0-30\right) \approx 0 \\
\sigma\left(20 * 0+20^{*} 1-10\right) \approx 1 & \sigma\left(-20^{*} 0-20^{*} 1+30\right) \approx 1 & \sigma\left(20^{*}+20^{*} 1-30\right) \approx 1 \\
\sigma\left(20 * 1+20^{*} 0-10\right) \approx 1 & \sigma\left(-20^{*} 1-20^{*} 0+30\right) \approx 1 & \sigma\left(20^{*} 1+20^{*} 1-30\right) \approx 1
\end{array}
$$

One layer can act like a filter

- Dot-product with input x, and a weight vector w , can emphasize or filter parts of x
- e.g., imagine x is an image, and w is zero everywhere except one small patch in the corner. It will pick out the magnitude of pixels in that small patch

*awesome overview: http://cs231n.github.io/convolutional-networks/

Maximum likelihood problem

- The goal is to still to find parameters (i.e., all the weights in the network) that maximize the likelihood of the data
- What is $\mathrm{p}(\mathrm{y} \mid \mathrm{x})$, for our NN ?
$E[Y \mid x]=N N(\mathbf{x})=f_{1}\left(f_{2}\left(\mathbf{x} \mathbf{W}^{(2)}\right) \mathbf{W}^{(1)}\right)$
e.g., mean of Gaussian, variance σ^{2} still a fixed value
e.g., Bernoulli parameter $p(y=1 \mid x)=E[Y \mid x]$
$p=N N(\mathbf{x})=f_{1}\left(f_{2}\left(\mathbf{x} \mathbf{W}^{(2)}\right) \mathbf{W}^{(1)}\right)$
Gaussian: $\sum_{i=1}^{n}\left(p_{i}-y_{i}\right)^{2}$
Bernoulli: $\sum_{i=1}^{n} \operatorname{Cross-Entropy}\left(p_{i}, y_{i}\right)$

Gradient descent procedure for NNs

- Compute delta for all nodes in the last layer
- This delta gets passed back to the nodes on previous layer (that influenced it), weighted by the weights leading into the node with delta

$$
\begin{aligned}
\boldsymbol{\delta}_{k}^{(1)} & =\hat{y}_{k}-y_{k} \\
\frac{\partial}{\partial \mathbf{W}_{j k}^{(1)}} & =\boldsymbol{\delta}_{k}^{(1)} \mathbf{h}_{j} \\
\boldsymbol{\delta}_{j}^{(2)} & =\left(\mathbf{W}_{j:}^{(1)} \boldsymbol{\delta}^{(1)}\right) \mathbf{h}_{j}\left(1-\mathbf{h}_{j}\right) \\
\frac{\partial}{\partial \mathbf{W}_{i j}^{(2)}} & =\boldsymbol{\delta}_{j}^{(2)} \mathbf{x}_{i}
\end{aligned}
$$

$\mathbf{W}^{(2)}$

What if removed one connection

 (i.e., not fully connected)?$$
\boldsymbol{\delta}_{k}^{(1)}=\hat{y}_{k}-y_{k}
$$

$\frac{\partial}{\partial \mathbf{W}_{j k}^{(1)}}=\boldsymbol{\delta}_{k}^{(1)} \mathbf{h}_{j} \quad$ Fully connected update

$$
\begin{aligned}
\boldsymbol{\delta}_{j}^{(2)} & =\left(\mathbf{W}_{j:}^{(1)} \boldsymbol{\delta}^{(1)}\right) \mathbf{h}_{j}\left(1-\mathbf{h}_{j}\right) \\
\frac{\partial}{\partial \mathbf{W}_{i j}^{(2)}} & =\boldsymbol{\delta}_{j}^{(2)} \mathbf{x}_{i}
\end{aligned}
$$

$\mathbf{W}_{j 1}^{(1)}$ no longer exists, so no update to it

$$
\delta_{j}^{(2)}=\left(\mathbf{W}_{j 2}^{(1)} \delta_{2}^{(1)}\right) \mathbf{h}_{j}\left(1-\mathbf{h}_{j}\right)
$$

Multi-layer neural network

What is phi (x) here?

hidden layer 1 hidden layer 2

[^1]
What about more layers?

- Can consider the first N -1 layers to learn the new representation of x : phi(x)
- this new representation is informed by prediction accuracy, unlike a fixed representation
- The last layer learns a generalized linear model on phi(x) to predict $E[Y \mid x]: f(<\operatorname{phi}(x), w>)$
- As with previous generalizations, this last layer can:
- use any generalized linear model transfer and loss
- can have multivariate output y
- can use regularizers
- can use different costs per sample

Theory to support depth?

- Mostly the utility of more layers is an empirical observation; not a lot of theory to support the importance of depth
- Depth has shown to be particularly important for convolutional neural networks
- each convolutional layer summarizes the previous layer, providing a hierarchical structure where depth is intuitively useful
- See for example: "Do Deep Nets Really Need to be Deep?" https://arxiv.org/abs/1312.6184

Exercise: bias unit

- Assume we pick a sigmoid activation
- What does it mean to add a bias unit to the input?
- can shift the sigmoid curve left or right, just like before, for the first hidden layer
- What does it mean to add a bias unit for an interior layer?
- can shift the sigmoid curve left or right for the next layer, without having to rely on previous layer to carefully adjust
- What does it mean to add a bias unit to the last layer (the last hidden layer before predicting y)?
- yup, you guessed it, still the same reason

Example of hidden layers in a deeper network

POOL

*awesome overview: http://cs231n.github.io/convolutional-networks/

Structural choices

- The number of hidden layers
- The number of hidden nodes in each layer
- The activation functions
- How connected each layer is (maybe not fully connected)
- The network structure simply indicates which variables influence other variables (contribute to their construction); can imagine many different architectures

Tanh and rectified linear

- Two more popular transfers are tanh and rectified linear
- Tanh is balanced around 0 , which seems to help learning
- usually preferred to sigmoid
$\tanh (\theta)=\frac{\exp (\theta)-\exp (-\theta)}{\exp (\theta)+\exp (-\theta)}$
- Rectified linea

$\tanh (\mathrm{x}) \quad$ hyperbolic tangent function

- Binary threshold function (perceptron): less used,
- some notes for this approach: http://www.cs.indiana.edu/~predrag/ classes/2015springb555/9.pdf

Rectified linear unit (ReLU)

- $\operatorname{Rectified}(x)=\max (0, x)$
- Non-differentiable point at 0
- Commonly gradient is 0 for $\mathrm{x}<=0$, else 1
- Softplus $(x)=\ln \left(1+e^{\wedge}\{x\}\right)$
- Recall our variable is $\theta=\mathbf{x}^{\top} \mathbf{w}$

- Common strategy: still use sigmoid (or tanh) with crossentropy in the last output layer, and use rectified linear units in the interior

Exercise: changing from sigmoid to tanh

- Let's revisit the two-layer update.

$$
\boldsymbol{\delta}_{j}^{(2)}=\left(\mathbf{W}_{j:}^{(1)} \boldsymbol{\delta}^{(1)}\right) \frac{\partial f_{2}\left(\boldsymbol{\theta}_{j}^{(2)}\right)}{\partial \boldsymbol{\theta}_{j}^{(2)}}
$$

$$
\begin{aligned}
\boldsymbol{\delta}_{j}^{(2)} & =\left(\mathbf{W}_{j:}^{(1)} \boldsymbol{\delta}^{(1)}\right) \mathbf{h}_{j}\left(1-\mathbf{h}_{j}\right) \\
\frac{\partial}{\partial \mathbf{W}_{i j}^{(2)}} & =\boldsymbol{\delta}_{j}^{(2)} \mathbf{x}_{i}
\end{aligned}
$$

- How does it change if we instead use f_2 = tanh, for the activation on the first layer?
- recall: the derivative of \tanh (theta) is 1 -tanh ${ }^{\wedge}$ 2(theta)

$$
\delta_{j}^{(2)}=\left(\mathbf{W}_{j:}^{(1)} \boldsymbol{\delta}^{(1)}\right)\left(1-\mathbf{h}_{j}^{2}\right)
$$

Exercise: changing from sigmoid to ReLU

- Let's revisit the two-layer update.

$$
\boldsymbol{\delta}_{j}^{(2)}=\left(\mathbf{W}_{j:}^{(1)} \boldsymbol{\delta}^{(1)}\right) \frac{\partial f_{2}\left(\boldsymbol{\theta}_{j}^{(2)}\right)}{\partial \boldsymbol{\theta}_{j}^{(2)}}
$$

$$
\begin{aligned}
\boldsymbol{\delta}_{j}^{(2)} & =\left(\mathbf{W}_{j:}^{(1)} \boldsymbol{\delta}^{(1)}\right) \mathbf{h}_{j}\left(1-\mathbf{h}_{j}\right) \\
\frac{\partial}{\partial \mathbf{W}_{i j}^{(2)}} & =\boldsymbol{\delta}_{j}^{(2)} \mathbf{x}_{i}
\end{aligned}
$$

- How does it change if we instead use f_2 = relu, for the activation on the first layer?
- recall: the derivative of relu(theta) $=\max (0$, theta) is 1 or 0

$$
\delta_{j}^{(2)}=\left(\mathbf{W}_{j:}^{(1)} \boldsymbol{\delta}^{(1)}\right) \text { Indicator }\left(\mathbf{h}_{j}>0\right)
$$

Why so careful with I1 and not ReLU?

- For L1 (Lasso) used proximal operators for non-differentiable function to ensure convergence
- Why so uncareful with ReLUs?
- One answer: it seems to work
- Hypothesis: if gradient pushing input to ReLU to zero, then overshooting non-differentiable point ok $\rightarrow>$ the output value is still 0 !

How do we select the loss function and activations?

- How do we select the loss function?
- Loss is only defined for the last layer $->$ we use generalized linear models
- How do we select activations?
- activation on last layer determined by GLM
- for interior activations, its an art to decide what to use

Optimization choices

- Derived gradient descent update for two-layers
- and natural extension to more layers
- The objective is still (mostly) smooth, but is no longer convex; is this a problem?
- Can still use gradient descent approaches, but might get stuck in local minima or saddle points $\rightarrow>$ the chosen optimization approaches care more about getting out of such solutions
- The initialization matters more (why?)

Exercise: Updating with new samples

- How might we incorporate new samples, into our learned neural network model?
- What if the world is non-stationary, say the distribution drifts?
- Do you expect this to be more or less reactive than updating with new samples in logistic regression?

Initialization

- One of the key aspects that have made NNs work is better initialization strategies
- Imagine could initialize really close to the true solution
- wouldn't that be great! We would just need to iterate a small number of steps and be done
- In general, where we initialize from can significantly impact the number of steps and the final solution
- initialization affects how close we are to a good solution
- initializations affects the function surface in that local region; flat function surfaces can be bad

Modern initialization strategies

- Maintain consistent variance of gradients throughout the network, to ensure that gradients do not go to zero in earlier layers
- if nodes become zero, they start to filter some of the gradient that is being passed backwards
- See the paper: "Understanding the difficulty of training deep feedforward neural networks", Glorot and Bengio

Impact of initialization

Weights Drawn from $N(\mu=0, \sigma=0.05)$

Gradient descent approaches

- Commonly use stochastic gradient descent (SGD) or minibatch SGD, for a relatively small mini-batch size of say 32
- Mini-batch: update weights using an averaged gradient over a subset of 32 samples (a mini batch B)

- Approach: for one epoch (iterating over the dataset once)
- SGD with one sample:
- SGD with mini-batch:

$$
\begin{aligned}
& \mathbf{w}_{t+1}=\mathbf{w}_{t}-\eta_{t} \nabla c_{i}\left(\mathbf{w}_{t}\right) \\
& \mathbf{w}_{t+1}=\mathbf{w}_{t}-\eta_{t} \sum_{j \in B_{i}} \nabla c_{j}\left(\mathbf{w}_{t}\right)
\end{aligned}
$$

- If $\mathrm{n}=1000$, mini-batch $\mathrm{b}=10$, how many iterations for SGD and mini-batch SGD within one epoch?

Why SGD? Why not batch gradient descent?

- Same reasons as before: computationally wasteful to estimate gradient for the entire dataset, only improves direction minorly over a sample average of the gradients for a much smaller mini-batch
- SGD can more easily jump past saddle points in the objective
- SGD helps prevent overfitting, since it does not converge exactly to minimizers (since we never set step sizes that carefully)

Selecting step sizes

- Can select a single stepsize for the entire network
- That's a hard parameter to tune
- Much better to select an individual stepsize for each parameter
- a vector stepsizes
- Quasi-second order algorithms also work for NNs
- Adadelta
- Adam

Exercise: overfitting

- Imagine someone gave you a kernel representation with 1000 prototypes
- representation is likely sparse: only a small number of features in phi(x) are active (the rest are near zero)
- Imagine you learned an NN, with one hidden layer of size 1000
- Which do you think might be more prone to overfitting?
- Is it just about number of parameters? What if use a linear activation function?

Strategies to avoid overfitting

- Early stopping
- keep a validation set, a subset of the training set
- after each epoch, check if accuracy has levelled off on the validation set; if so, stop training
- uses test accuracy rather than checking the objective is minimized
- Dropout
- Other regularizers

Whiteboard

- Linear neural network
- Auto-encoder
- Matrix factorization

[^0]: * from http://cs231n.github.io/neural-networks-1/; see that page for a nice discussion on neural nets

[^1]: * from http://cs231n.github.io/neural-networks-1/; see that page for a nice discussion on neural nets

