
Nonlinear representations

Comments

• Assignment 2 deadline extended to the end of Friday

• I do apologize for the late additions to the assignment. Any
issues?

2

Representations for learning
nonlinear functions

• Generalized linear models enabled many p(y | x) distributions
• Still however learning a simple function for E[Y | x], i.e., f(<x,w>)

• Approach we discussed earlier: augment current features x
using polynomials

• There are many strategies to augmenting x
• fixed representations, like polynomials, wavelets

• learned representations, like neural networks and matrix factorization

3

What if classes are not linearly
separable?

4

How to learn f(x) such that f(x) > 0 predicts +
and f(x) < 0 predicts negative?

x

2
1 + x

2
2 = 1

x1 = x2 = 0

=) f(x) = �1 < 0

x1 = 2, x2 = �1

=) f(x) = 4 + 1� 1 = 4 > 0

f(x) = x

2
1 + x

2
2 � 1

What if classes are not linearly
separable?

5

How to learn f(x) such that f(x) > 0 predicts +
and f(x) < 0 predicts negative?

x

2
1 + x

2
2 = 1 f(x) = x

2
1 + x

2
2 � 1

�(x) =

2

4
x

2
1

x

2
2

1

3

5 f(x) = �(x)>w

If use logistic regression, what is p(y=1 | x)?

What if classes are not linearly
separable?

6

x

2
1 + x

2
2 = 1 f(x) = x

2
1 + x

2
2 � 1

�(x) =

2

4
x

2
1

x

2
2

1

3

5 f(x) = �(x)>w

Imagine learned w. How do we predict on a new x?

Nonlinear transformation

7

x ! �(x) =

0

@
�1(x)
. . .

�p(x)

1

A

e.g., x = [x1, x2], �(x) =

0

BBBBBBBB@

x1

x2

x

2
1

x1x2

x

2
2

x

3
1

x

3
2

1

CCCCCCCCA

Gaussian kernel /
Gaussian radial basis function

8

k(x,x0
) = exp

✓
�kx� x

0k22
�2

◆

x =

x1

x2

�
!

2

64
k(x,x1)

...
k(x,xk)

3

75

x → [K (x , x
1
) K (x , x

2
) K (x , x

3
)] '

 = [5 2 3] '

x

x
2

x
3 x

1

5

3

2

0.1

0.8

0.5

.1 .8 .5

p

f(x) =
kX

i=1

wik(x,xi)

p

Gaussian kernel /
Gaussian radial basis function

9

Possible function f with several centersKernel

k(x,x0
) = exp

✓
�kx� x

0k22
�2

◆
f(x) =

kX

i=1

wik(x,xi)

p

Selecting centers

• Many different strategies to decide on centers
• many ML algorithms use kernels e.g., SVMs, Gaussian process regression

• For kernel representations, typical strategy is to select training data
as centers

• Clustering techniques to find centers

• A grid of values to best (exhaustively) cover the space

• Many other strategies, e.g., using information gain, coherence
criterion, informative vector machine

10

Covering space uniformly with
centres

• Imagine has 1-d space, from range [-10, 10]

• How would we pick p centers uniformly?

• What if we have a 5-d space, in ranges [-1,1]?
• To cover entire 5-dimensional, need to consider all possible options

• Split up 1-d into m values, then total number of centres is m^5

• i.e., for first value of x1, can try all other m values for x2, …, x5

11

Why select training data as
centers?

• Observed data indicates the part of the space that we actually
need to model
• can be much more compact than exhaustively covering the space

• imagine only see narrow trajectories in world, even if data is d-
dimensional, data you encounter may lie on a much lower-
dimensional manifold (space)

• Any issues with using all training data for centres?
• How can we subselect centres from training data?

12

How would we use clustering to
select centres?

• Clustering is taking data and finding p groups

• What distance measure should we use?
• If k(x,c) between 0 and 1 and k(x,x) = 1 for all x, then 1-k(x,c) gives a

distance

13

What if we select centres
randomly?

• Are there any issues with the linear regression with a kernel
transformation, if we select centres randomly from the data?

• If so, any suggestions to remedy the problem?

14

nX

i=1

0

@
pX

j=1

k(x, zj)wj � yi

1

A
2

+ �kwk1

Exercise

• What would it mean to use an l1 regularizer with a kernel
representation?
• Recall that l1 prefers to zero elements in w

15

nX

i=1

0

@
pX

j=1

k(x, zj)wj � yi

1

A
2

+ �kwk1

Exercise: How do we decide on
the nonlinear transformation?

• We can pick a 5-th order polynomial or 6-th order, or… Which
should we pick?

• We can pick p centres. How many should we pick?

• How can we avoid overparametrizing or underparameterizing?

16

Other similarity transforms

• Linear kernel:

• Laplace kernel (Laplace distribution instead of Gaussian)

• Binning transformation

17

k(x, c) = x

>
c

k(x, c) = exp(�bkx� ck1)

s(x, c) =

⇢
1 if x in box around c

0 else

Dealing with non-numeric data

• What if we have categorical features?
• e.g., feature is the blood type of a person

• Even worse, what if we have strings describing the object?
• e.g., feature is occupation, like “retail”

18

Some options

• Convert categorical feature into integers
• e.g., {A, B, AB, O} —> {1, 2, 3, 4}

• Any issues?

• Convert categorical feature into indicator vector
• e.g., A —> [1 0 0 0], B —> [0 1 0 0], …

• Any issues?

19

Using kernels for categorical or
non-numeric data

• An alternative is to use kernels (or similarity transforms)

• If you know something about your data/domain, might have a
good similarity measure for non-numeric data

• Some more generic kernel options as well
• Matching kernel: similarity between two items is the proportion of

features that are equal

20

age

gender

income

education

x =

{15-24, 25-34, …, 65+}

{F, M}

{Low, Medium, High}

{Bachelors, Trade-Sch, High-Sch, …}

Census dataset: Predict hours worked per week

Example: matching kernel

21

Example: Matching similarity for
categorical data

22

age

gender

income

education

x =
k(x1,x2) = k

24-34

F

Medium

Trade-Sch

35-44

F

Medium

Bachelors

= 0.5

Representational properties of
transformations

• Approximation properties: which transformations can
approximate “any function”?

• Radial basis functions (a huge number of them)

• Polynomials and the Taylor series

• Fourier basis and wavelets

23

Distinction with the kernel trick
• When is the similarity actually called a “kernel”?

• Nice property of kernels: can always be written as a dot
product in some feature space

• In some cases, they are used to compute inner products
efficiently, assuming one is actually learning with the feature
expansion
• This is called the kernel trick

• Implicitly learning with feature expansion
• not learning with expansion that is similarities to centres

24

k(x, c) = (x)> (c)

 (x)

Example: polynomial kernel

25

�(x) =

2

4
x

2
1p

2x1x2

x

2
2

3

5

k(x,x0
) = h�(x),�(x0

)i = hx,x0i2

In general, for order d polynomials, k(x,x0
) = hx,x0id

Gaussian kernel

26

�(x) = exp(��x

2
)

2

666664

1q
2�
1! xq

(2�)2

2! x

2

.

.

.

3

777775

Infinite polynomial representation

k(x,x0
) = exp

✓
�kx� x

0k22
�2

◆

Regression with new features

27

min
w

nX

i=1

(�(xi)
>
w � yi)

2 = min
w

nX

i=1

0

@

0

@
pX

j=1

�j(xi)wj

1

A� yi

1

A
2

min
w

nX

i=1

(�(xi)
>
w � yi)

2 = min
a

nX

i=1

0

@

0

@
nX

j=1

h�(xi),�(xj)iaj

1

A� yi

1

A
2

What if p is really big?

If can compute dot product efficiently, then can solve this
regression problem efficiently

What about learning the
representation?

• We have talked about fixed nonlinear transformations
• polynomials

• kernels

• How do we introduce learning?
• could learn centers, for example

• learning is quite constrained, since can only pick centres and widths

• Neural networks learn this transformation more from scratch

28

Fixed representation vs. NN

29

x
1

x
2

x
3

x
4

y

y

Input
layer

Output
layer

Figure 7.2: Generalized linear model, such as logistic regression.

x
1

x
2

x
3

x
4

y

y

Hidden
layer

Input
layer

Output
layer

Figure 7.3: Standard neural network.

106

GLM with
augmented fix representation Two-layer neural network

x
1

x
2

x
3

x
4

y

y

Input
layer

Output
layer

Figure 7.2: Generalized linear model, such as logistic regression.

x
1

x
2

x
3

x
4

y

y

Hidden
layer

Input
layer

Output
layer

Figure 7.3: Standard neural network.

106

Fixed
transform

No
learning

here

Learn
weights

here

Learn
weights

here

Learn
weights

here
�(x) �(x)

Explicit steps in visualizations

30

✓j

e.g., sigmoid
tanh
ReLUd d

jth hidden node

Example: logistic regression
versus neural network

• Both try to predict p(y = 1 | x)

• Logistic regression learns W such that

• Neural network learns W1 and W2 such that

31

and y 2 {0, 1}. If y 2 R, we use linear regression for this last layer and so learn weights
w(2) 2 R2 such that hw(2) approximates the true output y. If y 2 {0, 1}, we use logistic
regression for this last layer and so learn weights w(2) 2 R2 such that �(hw(2)

) approximates
the true output y. ⇤

Now we consider the more general case with any d, k
1

,m. To provide some intuition
for this more general setting, we will begin with one hidden layer, for the sigmoid transfer
function and cross-entropy output loss. For logistic regression we estimated W 2 Rd⇥m,
with f(xW) = �(xW) ⇡ y. We will predict an output vector y 2 Rm, because it will make
later generalizations more clear-cut and make notation for the weights in each layer more
uniform. When we add a hidden layer, we have two parameter matrices W(2) 2 Rd⇥k1 and
W(1) 2 Rk1⇥m, where k

1

is the dimension of the hidden layer

h = �(W(2)x) =

2

6

6

6

6

4

�(xW(2)

:1

)

�(xW(2)

:2

)

...
�(xW(2)

:k1
)

3

7

7

7

7

5

2 Rk1

where the sigmoid function is applied to each entry in xW(2) and hW(1). This hidden layer
is the new set of features and again you will do the regular logistic regression optimization
to learn weights on h:

p(y = 1|x) = �(hW(1)

) = �(�(xW(2)

)W(1)

).

With the probabilistic model and parameter specified, we now need to derive an algo-
rithm to obtain those parameters. As before, we take a maximum likelihood approach and
derive gradient descent updates. This composition of transfers seems to complicate matters,
but we can still take the gradient w.r.t. our parameters. We simply have more parameters
now: W(2) 2 Rk1⇥d,W(1) 2 R1⇥k1 . Once we have the gradient w.r.t. each parameter ma-
trix, we simply take a step in the direction of the negative of the gradient, as usual. The
gradients for these parameters share information; for computational efficiency, the gradient
is computed first for W(1), and duplicate gradient information sent back to compute the
gradient for W(2). This algorithm is typically called back propagation, which we describe
next.

In general, we can compute the gradient for any number of hidden layers. Denote
each differentiable transfer function f

1

, . . . , fH , ordered with f
1

as the output transfer, and
k
1

, . . . , kH�1

as the hidden dimensions with H � 1 hidden layers. Then the output from the
neural network is

f
1

⇣

f
2

⇣

. . . fH�1

⇣

fH
⇣

xW(H)

⌘

W(H�1)

⌘

. . .
⌘

W(1)

⌘

where W(1) 2 Rk1⇥m, W(2) 2 Rk2⇥k1 , . . . ,W(H) 2 Rd⇥kH�1 .

Backpropagation algorithm

We will start by deriving back propagation for two layers; the extension to multiple layers
will be more clear given this derivation. Due to the size of the network, we will often learn

85

and y 2 {0, 1}. If y 2 R, we use linear regression for this last layer and so learn weights
w(2) 2 R2 such that hw(2) approximates the true output y. If y 2 {0, 1}, we use logistic
regression for this last layer and so learn weights w(2) 2 R2 such that �(hw(2)

) approximates
the true output y. ⇤

Now we consider the more general case with any d, k
1

,m. To provide some intuition
for this more general setting, we will begin with one hidden layer, for the sigmoid transfer
function and cross-entropy output loss. For logistic regression we estimated W 2 Rd⇥m,
with f(xW) = �(xW) ⇡ y. We will predict an output vector y 2 Rm, because it will make
later generalizations more clear-cut and make notation for the weights in each layer more
uniform. When we add a hidden layer, we have two parameter matrices W(2) 2 Rd⇥k1 and
W(1) 2 Rk1⇥m, where k

1

is the dimension of the hidden layer

h = �(W(2)x) =

2

6

6

6

6

4

�(xW(2)

:1

)

�(xW(2)

:2

)

...
�(xW(2)

:k1
)

3

7

7

7

7

5

2 Rk1

where the sigmoid function is applied to each entry in xW(2) and hW(1). This hidden layer
is the new set of features and again you will do the regular logistic regression optimization
to learn weights on h:

p(y = 1|x) = �(hW(1)

) = �(�(xW(2)

)W(1)

).

With the probabilistic model and parameter specified, we now need to derive an algo-
rithm to obtain those parameters. As before, we take a maximum likelihood approach and
derive gradient descent updates. This composition of transfers seems to complicate matters,
but we can still take the gradient w.r.t. our parameters. We simply have more parameters
now: W(2) 2 Rk1⇥d,W(1) 2 R1⇥k1 . Once we have the gradient w.r.t. each parameter ma-
trix, we simply take a step in the direction of the negative of the gradient, as usual. The
gradients for these parameters share information; for computational efficiency, the gradient
is computed first for W(1), and duplicate gradient information sent back to compute the
gradient for W(2). This algorithm is typically called back propagation, which we describe
next.

In general, we can compute the gradient for any number of hidden layers. Denote
each differentiable transfer function f

1

, . . . , fH , ordered with f
1

as the output transfer, and
k
1

, . . . , kH�1

as the hidden dimensions with H � 1 hidden layers. Then the output from the
neural network is

f
1

⇣

f
2

⇣

. . . fH�1

⇣

fH
⇣

xW(H)

⌘

W(H�1)

⌘

. . .
⌘

W(1)

⌘

where W(1) 2 Rk1⇥m, W(2) 2 Rk2⇥k1 , . . . ,W(H) 2 Rd⇥kH�1 .

Backpropagation algorithm

We will start by deriving back propagation for two layers; the extension to multiple layers
will be more clear given this derivation. Due to the size of the network, we will often learn

85

= p(y = 1|x)

No representation learning vs.
neural network

32

x
1

x
2

x
3

x
4

y

y

Input
layer

Output
layer

Figure 7.2: Generalized linear model, such as logistic regression.

x
1

x
2

x
3

x
4

y

y

Hidden
layer

Input
layer

Output
layer

Figure 7.3: Standard neural network.

106

x
1

x
2

x
3

x
4

y

y

Input
layer

Output
layer

Figure 7.2: Generalized linear model, such as logistic regression.

x
1

x
2

x
3

x
4

y

y

Hidden
layer

Input
layer

Output
layer

Figure 7.3: Standard neural network.

106

GLM
(e.g. logistic regression) Two-layer neural network

What are the representational
capabilities of neural nets?

• Single hidden-layer neural networks with sigmoid transfer can
represent any continuous function on a bounded space within
epsilon accuracy, for a large enough number of hidden nodes
• see Cybenko, 1989: “Approximation by Superpositions of a Sigmoidal

Function”

33

x
1

x
2

x
3

x
4

y

y

Input
layer

Output
layer

Figure 7.2: Generalized linear model, such as logistic regression.

x
1

x
2

x
3

x
4

y

y

Hidden
layer

Input
layer

Output
layer

Figure 7.3: Standard neural network.

106

W(1)

W(2)

h

(2) = f2(xW
(2))

ŷ = f1(h
(1)

W

(1))

