onlinear representations

T T T T | — L Al — T T T T
., o ,° .
- - < ® ¢ ® .\‘\\ -1
1.5) / o o. . *
/ * W o, * o,
e v g
1T * o ‘T-\\ .
! o
o, N, e
. ¢ Jeo*r ‘. o % P .
05| . ! AN
' ° / » o o
l. f . - '. . ~‘ % ‘i
0r o =l | % o ® r a | o2 -

T
\t Q o)
e} e® ~ ——
[e} @ L /'/
L \ .
-1 5 - \. .. ¢ .z /
1 1 1 1 [E— | T 1 1 1 1

Comments

e Assignment 2 deadline extended to the end of Friday

e | do apologize for the late additions to the assignment. Any
Issues?

Representations for learning
nonlinear functions

e (Generalized linear models enabled many p(y | x) distributions

- Still however learning a simple function for E[Y | x], i.e., f(<x,w>)

e Approach we discussed earlier: augment current features x
using polynomials

e There are many strategies to augmenting x
- fixed representations, like polynomials, wavelets

 |learned representations, like neural networks and matrix factorization

What if classes are not linearly
separable’?

2 2 _
ri+ x5 =1 f(a?)—a:1+x2—1
15 . .. 0... .: | :I;]_ p— :'[/.2 — O
a . s\
i * % . y ™~ :
05T * /4. {‘.. ': \. f (aj) — 1 < O
| “« o' =t '
[. . .‘.f. . .." Ce ~,
Or ® & . .
T R RN B r1 = 2,10 = —1
05 Ff 8 ¢ "\‘ ¢ ot o /, |
-1t ‘\.\ "‘r‘:""-..—.’.'. : f(aj) — 4 —I_ 1 o 1 — 4 > O
. r=1 ’
15T “ ®e
LI
-21.5 2 -11.5 - -on.é_L(; 05 1 1.15 2 2i5

How to learn f(x) such that f(x) > O predicts +
and f(x) < O predicts negative”

What if classes are not linearly

separable’?
2 +xs=1 flz)=27+23—1

P(x) = | x3 f(x) = o(x) ' w

f use logistic regression, what is p(y=1 | x)?

How to learn f(x) such that f(x) > O predicts +
and f(x) < O predicts negative”

What if classes are not linearly
separable?

2 +x5=1 f(zx)=aj+z5—1

P(x) = | 3 f(x) = p(x)'w

Imagine learned w. How do we predict on a new x?

Nonlinear transformation

(¢1(x))
X — ¢(x) = .
Pp(X)

(Gaussian kernel /
(Gaussian radial basis function

O

e ECE if;w@-k(x, <)

A
X = [K<x’x1) K(X’xz) K(x,x3)]’
= [.1.8.5]'
o k(x,x1) *2 o
X1 . 5 0.8
X = . — . ‘:“x
2 . SO
]‘C(X e) 0.5 - 0.1
i » ~P)
‘/' \~~
X, e x,
|

(Gaussian kernel /
(Gaussian radial basis function

N (==X o~
k(x,x) = exp — F(x) =) wik(x,x;)
1=1

Kernel Possible function f with several centers

‘/)“‘\ il ““ f "\.
‘%%t“w‘“ \‘* ‘

‘ \\\\""

10

Selecting centers

Many different strategies to decide on centers

- many ML algorithms use kernels e.g., SVMs, Gaussian process regression

For kernel representations, typical strategy is to select training data
as centers

Clustering techniques to find centers
A grid of values to best (exhaustively) cover the space

Many other strategies, e.g., using information gain, coherence
criterion, informative vector machine

11

Covering space uniformly with
centres

 Imagine has 1-d space, from range [-10, 10]
e How would we pick p centers uniformly?

e What if we have a 5-d space, in ranges [-1,1]7
» To cover entire 5-dimensional, need to consider all possible options
- Split up 1-d into m values, then total number of centres is m"5

* l.e., for first value of x1, can try all other m values for x2, ..., x5

12

Why select training data as
centers?

e (Observed data indicates the part of the space that we actually
need to model

« can be much more compact than exhaustively covering the space

* iImagine only see narrow trajectories in world, even if data is d-
dimensional, data you encounter may lie on a much lower-
dimensional manifold (space)

e Any issues with using all training data for centres?

- How can we subselect centres from training data?

How would we use clustering to
select centres”?

e Clustering is taking data and finding p groups

e \What distance measure should we use?

f k(x,c) between 0 and 1 and k(x,x) = 1 for all x, then 1-k(x,c) gives a
distance

13

14

What if we select centres
randomly??

* Are there any issues with the linear regression with a kernel
transformation, if we select centres randomly from the data?

e |f so, any suggestions to remedy the problem?

n p

Z k(X, Zj)Wj — Y;
1

i=1 \ j=

15

Exercise

e What would it mean to use an |1 regularizer with a kernel
representation?

« Recall that |1 prefers to zero elements in w

S

p
Z (x,25)w; —yi | + Mwll

1=1 1=1

16

Exercise: How do we decide on
the nonlinear transformation?

e We can pick a 5-th order polynomial or 6-th order, or... Which

should we pick?

e We can pick p centres. How many should we pick?

e How can we avoid overparametrizing or underparameterizing?

17

Other similarity transforms

e Linearkemel: k(x,c) =x'c

e | aplace kernel (Laplace distribution instead of Gaussian)

k(x,c) = exp(—b||x — c||1)

e Binning transformation

(1 if x in box around c
0 else

\

s(x,c) = «

18

Dealing with non-numeric data

e What if we have categorical features?

* e.g., feature is the blood type of a person

e Even worse, what if we have strings describing the object?

* e.g., feature is occupation, like “retail”

Some options

e Convert categorical feature into integers
- e.g,{A B,AB, O} —>{1, 2, 3, 4}

* Any issues?

e Convert categorica

+ eg,A—>[1000

* Any issues?

19

feature into indicator vector
'B—>[0100], ...

Using kernels for categorical or
non-numeric data

e An alternative is to use kernels (or similarity transforms)

e |f you know something about your data/domain, might have a
good similarity measure for non-numeric data

e Some more generic kernel options as well

« Matching kernel: similarity between two items is the proportion of
features that are equal

20

Example: matching kernel

age {15-24, 25-34, ..., 65+}
_ gender {F, M}
iIncome {Low, Medium, High}
education

{Bachelors, Trade-Sch, High-Sch, ...}

Census dataset: Predict hours worked per week

21

Example: Matching similarity for
categorical data

age

24-34 35-44
ender
X = I F F
k(X¥ncsmie= k — 0.5
Medium Medium
education

Trade-Sch Bachelors

23

Representational properties of
transformations

Approximation properties: which transformations can
approximate “any function™?

Radial basis functions (a huge number of them)
Polynomials and the Taylor series

Fourier basis and wavelets

24

Distinction with the kernel trick

When is the similarity actually called a “kernel”?

Nice property of kernels: can always be written as a dot
product in some feature space

k(x,¢) = (x) 9¥(c)

In some cases, they are used to compute inner products
efficiently, assuming one is actually learning with the feature
expansion

« This is called the kernel trick

Implicitly learning with feature expansion ¥(x)

* not learning with expansion that is similarities to centres

Example: polynomial kernel

¢(X) — \/§X1X2

k(x,X') = ($(x), p(x)) = (x,x')’

In general, for order d polynomials, k(x,x’) = (x, x')®

25

(Gaussian kernel

Infinite polynomial representation

¢(z) = exp(—yz?) \/w)

20

27

Regression with new features

min » (¢(xi) " w —y;)” =min) ((Zw(xi), ¢<xj>>aj) - y)

It can compute dot product efficiently, then can solve this
regression problem efticiently

28

What about learning the
representation?

e \We have talked about fixed nonlinear transformations
* polynomials

 Kkernels

e How do we introduce learning?
- could learn centers, for example

* |learning is quite constrained, since can only pick centres and widths

e Neural networks learn this transformation more from scratch

Fixed representation vs. NN

Input Fixed Output

layer transform layer Input Hidden Output

layer layer layer

Learn Learn
learning ¢(X) weights weights ¢(X) weights
here here here here

GLM with

. . Two-layer neural network
augmented fix representation

29

Explicit steps in visualizations

weights
Inputs
"
activation
functon
X ._. net gvut ith hidden node
2 Y QD 0,
activation
e.g., sigmoid

tanh
Rel .U

30

31

Example: logistic regression
versus neural network

e Both try to predict p(y =1 | x)
e | ogistic regression learns W such that

f(xW) = oc(xW) = p(y = 1]x)

e Neural network learns W1 and W2 such that

p(y = 1x) = o(AW D) = o(o(xW2)yW)

No representation learning vs.
neural network

Input Output Input Hidden Output
layer layer layer layer layer

GLM
(e.g. logistic regression)

Two-layer neural network

32

What are the representational
capabillities of neural nets?

e Single hidden-layer neural networks with sigmoid transfer can
represent any continuous function on a bounded space within
epsilon accuracy, for a large enough number of hidden nodes

- see Cybenko, 1989: “Approximation by Superpositions of a Sigmoidal
Function”

Input Hidden Output

layer layer layer h(z) _ f2 (XW(Z))
y = bW

33

