Nonlinear representations

Comments

- Assignment 2 deadline extended to the end of Friday
- I do apologize for the late additions to the assignment. Any issues?

Representations for learning nonlinear functions

- Generalized linear models enabled many $p(y \mid x)$ distributions
- Still however learning a simple function for $E[Y \mid x]$, i.e., $f(<x, w>)$
- Approach we discussed earlier: augment current features x using polynomials
- There are many strategies to augmenting x
- fixed representations, like polynomials, wavelets
- learned representations, like neural networks and matrix factorization

What if classes are not linearly separable?
 $x_{1}^{2}+x_{2}^{2}=1 \quad f(x)=x_{1}^{2}+x_{2}^{2}-1$

$$
x_{1}=x_{2}=0
$$

$$
\Longrightarrow f(x)=-1<0
$$

$$
x_{1}=2, x_{2}=-1
$$

$$
\Longrightarrow f(x)=4+1-1=4>0
$$

How to learn $f(x)$ such that $f(x)>0$ predicts + and $f(x)<0$ predicts negative?

What if classes are not linearly separable?
$x_{1}^{2}+x_{2}^{2}=1 \quad f(x)=x_{1}^{2}+x_{2}^{2}-1$

$$
\phi(\mathbf{x})=\left[\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
1
\end{array}\right]
$$

$$
f(\mathbf{x})=\phi(\mathbf{x})^{\top} \mathbf{w}
$$

If use logistic regression, what is $p(y=1 \mid x)$?

How to learn $f(x)$ such that $f(x)>0$ predicts + and $f(x)<0$ predicts negative?

What if classes are not linearly separable?

$x_{1}^{2}+x_{2}^{2}=1 \quad f(x)=x_{1}^{2}+x_{2}^{2}-1$

$$
\phi(\mathbf{x})=\left[\begin{array}{c}
x_{1}^{2} \\
x_{2}^{2} \\
1
\end{array}\right] \quad f(\mathbf{x})=\phi(\mathbf{x})^{\top} \mathbf{w}
$$

Imagine learned w. How do we predict on a new x?

Nonlinear transformation

$$
\mathbf{x} \rightarrow \boldsymbol{\phi}(\mathbf{x})=\left(\begin{array}{c}
\phi_{1}(\mathbf{x}) \\
\ldots \\
\phi_{p}(\mathbf{x})
\end{array}\right)
$$

$$
\text { e.g., } \mathbf{x}=\left[x_{1}, x_{2}\right], \quad \phi(\mathbf{x})=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{1}^{2} \\
x_{1} x_{2} \\
x_{2}^{2} \\
x_{1}^{3} \\
x_{2}^{3}
\end{array}\right)
$$

Gaussian kernel /

Gaussian radial basis function

$$
\begin{aligned}
& k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(\frac{-\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}^{2}}{\sigma^{2}}\right) \quad f(\mathbf{x})=\sum_{i=1}^{p} w_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right) \\
& \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
k\left(\mathbf{x}, \mathbf{x}_{1}\right) \\
\vdots \\
k\left(\mathbf{x}, \mathbf{x}_{p}\right)
\end{array}\right]
\end{aligned}
$$

Gaussian kernel /

Gaussian radial basis function

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(\frac{-\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}^{2}}{\sigma^{2}}\right) \quad f(\mathbf{x})=\sum_{i=1}^{p} w_{i} k\left(\mathbf{x}, \mathbf{x}_{i}\right)
$$

Kernel

Possible function f with several centers

Selecting centers

- Many different strategies to decide on centers
- many ML algorithms use kernels e.g., SVMs, Gaussian process regression
- For kernel representations, typical strategy is to select training data as centers
- Clustering techniques to find centers
- A grid of values to best (exhaustively) cover the space
- Many other strategies, e.g., using information gain, coherence criterion, informative vector machine

Covering space uniformly with centres

- Imagine has 1-d space, from range [-10, 10]
- How would we pick p centers uniformly?
- What if we have a $5-\mathrm{d}$ space, in ranges $[-1,1]$?
- To cover entire 5-dimensional, need to consider all possible options
- Split up 1-d into m values, then total number of centres is $m^{\wedge} 5$
- i.e., for first value of x 1 , can try all other m values for $\mathrm{x} 2, \ldots, \mathrm{x} 5$

Why select training data as centers?

- Observed data indicates the part of the space that we actually need to model
- can be much more compact than exhaustively covering the space
- imagine only see narrow trajectories in world, even if data is ddimensional, data you encounter may lie on a much lowerdimensional manifold (space)
- Any issues with using all training data for centres?
- How can we subselect centres from training data?

How would we use clustering to select centres?

- Clustering is taking data and finding p groups
- What distance measure should we use?
- If $k(x, C)$ between 0 and 1 and $k(x, x)=1$ for all x, then $1-k(x, c)$ gives a distance

What if we select centres randomly?

- Are there any issues with the linear regression with a kernel transformation, if we select centres randomly from the data?
- If so, any suggestions to remedy the problem?

$$
\sum_{i=1}^{n}\left(\sum_{j=1}^{p} k\left(\mathbf{x}, \mathbf{z}_{j}\right) \mathbf{w}_{j}-y_{i}\right)^{2}
$$

Exercise

- What would it mean to use an I1 regularizer with a kernel representation?
- Recall that I1 prefers to zero elements in w

$$
\sum_{i=1}^{n}\left(\sum_{j=1}^{p} k\left(\mathbf{x}, \mathbf{z}_{j}\right) \mathbf{w}_{j}-y_{i}\right)^{2}+\lambda\|\mathbf{w}\|_{1}
$$

Exercise: How do we decide on the nonlinear transformation?

- We can pick a 5-th order polynomial or 6-th order, or... Which should we pick?
- We can pick p centres. How many should we pick?
- How can we avoid overparametrizing or underparameterizing?

Other similarity transforms

- Linear kernel: $\quad k(\mathbf{x}, \mathbf{c})=\mathbf{x}^{\top} \mathbf{c}$
- Laplace kernel (Laplace distribution instead of Gaussian)

$$
k(\mathbf{x}, \mathbf{c})=\exp \left(-b\|\mathbf{x}-\mathbf{c}\|_{1}\right)
$$

- Binning transformation

$$
s(\mathbf{x}, \mathbf{c})=\left\{\begin{array}{lc}
1 & \text { if } \mathbf{x} \text { in box around } \mathbf{c} \\
0 & \text { else }
\end{array}\right.
$$

Dealing with non-numeric data

- What if we have categorical features?
- e.g., feature is the blood type of a person
- Even worse, what if we have strings describing the object?
- e.g., feature is occupation, like "retail"

Some options

- Convert categorical feature into integers
- e.g., $\{A, B, A B, O\} \rightarrow>\{1,2,3,4\}$
- Any issues?
- Convert categorical feature into indicator vector
- e.g., A \rightarrow - $\left.\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right], B \rightarrow\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right], \ldots$
- Any issues?

Using kernels for categorical or non-numeric data

- An alternative is to use kernels (or similarity transforms)
- If you know something about your data/domain, might have a good similarity measure for non-numeric data
- Some more generic kernel options as well
- Matching kernel: similarity between two items is the proportion of features that are equal

Example: matching kernel

age

gender

income
education
$\{15-24,25-34, \ldots, 65+\}$
\{F, M\}
\{Low, Medium, High\}
\{Bachelors, Trade-Sch, High-Sch, ...\}

Census dataset: Predict hours worked per week

Example: Matching similarity for categorical data

Representational properties of transformations

- Approximation properties: which transformations can approximate "any function"?
- Radial basis functions (a huge number of them)
- Polynomials and the Taylor series
- Fourier basis and wavelets

Distinction with the kernel trick

- When is the similarity actually called a "kernel"?
- Nice property of kernels: can always be written as a dot product in some feature space

$$
k(\mathbf{x}, \mathbf{c})=\boldsymbol{\psi}(\mathbf{x})^{\top} \boldsymbol{\psi}(\mathbf{c})
$$

- In some cases, they are used to compute inner products efficiently, assuming one is actually learning with the feature expansion
- This is called the kernel trick
- Implicitly learning with feature expansion $\boldsymbol{\psi}(\mathbf{x})$
- not learning with expansion that is similarities to centres

Example: polynomial kernel

$$
\begin{aligned}
& \phi(\mathrm{x})=\left[\begin{array}{c}
\mathrm{x}_{1}^{2} \\
\sqrt{2} \mathrm{x}_{1} \mathbf{x}_{2} \\
\mathrm{x}_{2}^{2}
\end{array}\right] \\
& k\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\left\langle\phi(\mathrm{x}), \phi\left(\mathrm{x}^{\prime}\right)\right\rangle=\left\langle\mathbf{x}, \mathrm{x}^{\prime}\right\rangle^{2}
\end{aligned}
$$

In general, for order d polynomials, $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle^{d}$

Gaussian kernel

Infinite polynomial representation

$$
\begin{gathered}
\phi(x)=\exp \left(-\gamma x^{2}\right)\left[\begin{array}{c}
1 \\
\sqrt{\frac{2 \gamma}{1!}} x \\
\sqrt{\frac{(2 \gamma)^{2}}{2!}} x^{2} \\
\vdots
\end{array}\right] \\
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(\frac{-\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}^{2}}{\sigma^{2}}\right)
\end{gathered}
$$

Regression with new features

$$
\min _{\mathbf{w}} \sum_{i=1}^{n}\left(\phi\left(\mathbf{x}_{i}\right)^{\top} \mathbf{w}-y_{i}\right)^{2}=\min _{\mathbf{w}} \sum_{i=1}^{n}\left(\left(\sum_{j=1}^{p} \phi_{j}\left(\mathbf{x}_{i}\right) \mathbf{w}_{j}\right)-y_{i}\right)^{2}
$$

What if p is really big?

$$
\min _{\mathbf{w}} \sum_{i=1}^{n}\left(\phi\left(\mathbf{x}_{i}\right)^{\top} \mathbf{w}-y_{i}\right)^{2}=\min _{\mathbf{a}} \sum_{i=1}^{n}\left(\left(\sum_{j=1}^{n}\left\langle\phi\left(\mathbf{x}_{i}\right), \phi\left(\mathbf{x}_{j}\right)\right\rangle \mathbf{a}_{j}\right)-y_{i}\right)^{2}
$$

If can compute dot product efficiently, then can solve this regression problem efficiently

What about learning the representation?

- We have talked about fixed nonlinear transformations
- polynomials
- kernels
- How do we introduce learning?
- could learn centers, for example
- learning is quite constrained, since can only pick centres and widths
- Neural networks learn this transformation more from scratch

Fixed representation vs. NN

GLM with
augmented fix representation

Two-layer neural network

Explicit steps in visualizations

Example: logistic regression versus neural network

- Both try to predict $p(y=1 \mid x)$
- Logistic regression learns W such that

$$
f(\mathbf{x} \mathbf{W})=\sigma(\mathbf{x} \mathbf{W})=p(y=1 \mid \mathbf{x})
$$

- Neural network learns W1 and W2 such that

$$
p(y=1 \mid \mathbf{x})=\sigma\left(\mathbf{h} \mathbf{W}^{(1)}\right)=\sigma\left(\sigma\left(\mathbf{x} \mathbf{W}^{(2)}\right) \mathbf{W}^{(1)}\right) .
$$

No representation learning vs. neural network

GLM
(e.g. logistic regression)

Two-layer neural network

What are the representational capabilities of neural nets?

- Single hidden-layer neural networks with sigmoid transfer can represent any continuous function on a bounded space within epsilon accuracy, for a large enough number of hidden nodes
- see Cybenko, 1989: "Approximation by Superpositions of a Sigmoidal Function"

