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Generative models: an
example with naive Bayes

* Image from Yaroslav Bulatov



Reminders/Comments

Assignment 2 due this week

Please see Tougqir’s clarifications

- He is trying to make the outcomes more clear-cut

Lectures are supposed to complement assignments

+ assignments are for you to learn, run into real problems first hand

Final exam will only include topics in the notes

- anything extra in lectures is for interest and context



Thought question

e Which optimization methods are more likely to overfit?
e [s it more likely for Stochastic GD or Batch GD to overfit?

e What about Second-order GD (i.e., Newton’s method)?



Exercise questions

e What are the properties of different optimization approaches?
* e.g., why are we taking the derivative and setting it to zero?

+ e.g., does the amount of data influence whether we obtain local or
global solutions?

* e.g., does stochastic gradient descent result in local solutions?

* e.g., can gradient descent approaches only be used for convex
problems?

* e.g., why would you use second-order gradient descent rather than
first-order gradient descent?



Batch GD versus SGD

e What are some advantages of batch gradient descent?
* less noisy gradient

* more clear strategies for selecting stepsize

e What are some advantages of SGD?

- more computationally efficient: does not waste an entire epoch to
provide an update to the weights

 convenient for updating current solution with new data

e Does batch always give better solutions than SGD?



Classification so far

Have been learning p(y | x)
- Either for binary classification, as a Bernoulli

« Or for multi-class classification, as a Multinomial

These are called discriminative classifiers

l.e., learning a function of x, to predict distribution overy, i.e,
f(x) = p(y | x)

Do not learn the distribution over x itself

Note: the classifiers have been linear so far, but this is not a
requirement for discriminative classifiers, f can be a (highly)
nonlinear function of x



Recall: Logistic regression

e Hyperplane w'x = 0 separates the two classes
. P(y=11x,w)>0.50nly when w'x > 0.
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Discriminative versus generative

e Discriminative: learn p(y | x), as a function of x

* |n generative learning,

 learn p(x | y) p(y) (which gives the joint p(x, y) = p(xly) p(y))
- compute p(x | y) p(y), which is proportional to p(y | x)

p(z|y)p(y)
p(x)

p(y|r) =

e Question: how do we use p(xly) p(y) for prediction?
e Question: how do we learn p(xly) and p(y)?

e Question: why might we want to use generative models?



How to use generative models

e Qur decision rule for using these probabilities is the same as
with logistic regression: pick class with the highest probability

e Assume you have learned p(x | y) and p(y) from a dataset

e Compute

f(x) = arg max p(ylx)

= arg r;léaagcp(X\y)p(y)/p(X)

— al'g I1N1ax X
g may p(x|y)p(y)



How to learn generative models

 For discriminative, had to choose distribution over y given x
« e.g. p(y | x) is Gaussian for continuous y
* e.g.p(ylx)is Poissonforyin{i, 2, 3, ...}
« e.g. p(y | x) is Bernoulli for y in {0,1}

e Parameters to p(y | x) were w such that E[Y | x] = f(xw)
e Now we need to choose the distribution p(x | y) and p(y)

e How do we pick p(x | y) and p(y)? What are the parameters?

10



11

How do we pick distributions
more generally?

For p(x), picked Gaussian, Bernoulli, Poisson, Gamma

- depending on the values x could take, or looking at a plot

For conditional distributions, like p(y | x), we picked the
distribution based on the properties of y

« Once the given features x are fixed, are are just learning a
distribution over y

Imagine x is a 2-d Gaussian RV and y is a 1-d Gaussian

What might you pick for p(x | y) and p(y)?
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Another setting

e |Imagine x is a 2-d Gaussian RV and y is a Bernoulli

e Now what might you pick for p(x | y) and p(y)?



What If there are lots of
features?

e Imagine x is a 1000-d random variable and y is a Bernoulli
e How can we determine what type of distribution to pick for x?

e What if we decide its a 1000-d multivariate Gaussian RV. Any
issues with learning mean mu and covariance Sigma?
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Simplifying assumptions

e How do we realistically learn p(x | y)?

e One option is to make a (strong) conditional independence
assumption: the features are independent given the label

X‘y Hp $z|y



Conditional independence
p(x|y) = ﬁp(mz]y) dSSU mptIOn

1=1

e Example: given a patient has the disease (y=1), attributes
about patient are uncorrelated (e.g., age & smokes)

- even within a class, age and smokes could be correlated

e Surprisingly, despite the fact that this seems unrealistic, in
practice this can work okay

« one hypothesis is we are running these algorithms on “easy” data

 another is that dependencies skew the distribution equally across all
classes, so no one class gets an increased probability Y

i @ ©® ¢



Naive Bayes

e For naive Bayes, we learn p(x | y) and p(y) exactly given this
conditional independence assumption

+ For the classification setting p(xly) = H p(xily)-

e Then we still need to choose p(xi | y) and p(y)

e Whatis p(y)? Table of values

ply=1),.ply =k — 1), with ply=k) =1 > ply =

probability
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What if we have binary features?

e For binary features x in{0,1}, binary y in {0,1}, what is p(x | y)?
e How do we learn p(x | y)?

e How do we learn p(y)?



What if we have continuous features?

e For continuous features x, binary y in {0,1}, what could we
choose for p(x | y)?

* e.g., 5 features

e Need to identify p(xi | y) — what could this be?

e What are the parameters and how do we learn them?
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Continuous naive Bayes
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Exercise

Imagine someone gives you p(x | y) and p(y)

They give you a test instance, with features x

* e.g., X is an image, of pixel values (values between 0 to 255)

Your goal is to predict the output y

* e.g., if the image contains a cat or not

How do you use p(x | y) and p(y) to make a prediction?
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Whiteboard

 Naive Bayes derivation
e Exercise showing how to use naive Bayes

e EXxercise dealing with missing values
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Thought question

e “| understand that there is always a tradeoff between bias and
variance of a model, and that this is a crucial part of model
optimization, but does this mean that we can't ever achieve
100% accuracy, even in simple tasks like digit recognition?”

Recall reducible and irreducible error
- Bias-variance is about selecting the model class (or function class)

- Choosing the function class influences reducible error; more powerful
function classes can reduce this error more

» Irreducible error represents noise that we cannot model, and so we
cannot ever achieve 100% accuracy

*  Why might such noise exist?
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Exercise: Bias-variance for
naive Bayes model

Do you think naive Bayes has high bias and/or high variance?
* IS naive Bayes unbiased?
« Recall: bias refers to error to the true function, in expectation

- isf(y) = p(x | y) an unbiased estimate of fA*(y)?
e How do we compute bias and variance?

e naive Bayes can perform better in the small sample setting

+ see “On discriminative vs. generative classifiers: A comparison of
logistic regression and naive Bayes”, Ng and Jordan, 2002
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Pros and Cons

e Discriminative

focus learning on the value we care about: p(y | x)

can be much simpler, particularly if features x complex: p(x | y) can
be difficult to model without strong assumptions

e (Generative

can be easier for expert to encode prior beliefs, e.g., for classifying
trees in evergreen or deciduous, structure/distribution over the
features (height, location) can be more clearly specified by p(x | y),
whereas p(y | x) does not allow this information to be encoded

can sample from the generative model, obtain explanations

more amenable to missing values



Sampling from generative model

e How sample (x,y) from generative model p(x,y) = p(x | y) p(y)

- Sample y from p(y)

« Then sample x from p(x | y)

e Why would you do this? Let’s use the trees example again
« Could sample trees from p(x | y) to see what your model produces

- Could answer additional questions about the features, such as average
leaf diameter in population

- Could depict average tree, within a type or across types
 Question: how would you do it within a type (deciduous or coniferous)?
 Question: how would you do it across types?

« More realistic example for explanations: obtain profile of typical person

oF with heart disease
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Other generative models

e Often use generative models for images (markov random field)
* e.g., can model the spatial structure in the distribution p(x | y)

- We know a lot about image structure, can take advantage of that
expert knowledge in choice of p(x | y)

O—C O




Thought question

e |s it possible to provide a prediction and an estimate of how
confident we are in that prediction?

- “Let's say the data you are modeling is inherently high-variance and it
may not be appropriate to give exact estimates for new data. Is it
possible to generate a distribution range, i.e., the outcome will likely
fall within some N(mu, sigma”2)”

e For p(y | x) Gaussian, we could try to estimate mean mu =
<X,w> and estimate variance sigma”2

» when predict E[Y | x], have a sense of how much y can vary

e But what if our estimates are wrong? To be confident in
predictions, want estimate of confidence in parameters

27



28

Practical considerations:
iIncorporating new data

Imagine you have a discriminative model (say weights w) and
now want to incorporate new data

How can you do this with regression approaches?
Option 1: add data to your batch and recompute entire solution

Option 2: start from previous w (warm start), add data to your
batch and do a few gradient descent steps

Option 3: use stochastic gradient descent update and step in
the direction of the gradient for those samples

- for a constant stream of data, will only ever use one sample and then
throw it away
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How about naive Bayes?

e How can we update means and covariances in naive Bayes
model?

e [ earned mu_{j,c} and sigma_{j,c} for each feature j, each
class c
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Updating naive Bayes model

e Keep a running average of mu_4{j,c} and sigma_{j,c}, with
number of samples n_{j,c} for feature | class c

e For a new sample (X, y), update parameters mu_{j,y} and
sigma_{j,y} using:
* mU_{j,y} = mu—{j’y} + (X—j - mu_{j,Y})/ n_{j,C}

« sndmoment_4{j,y} = sndmoment_{j,y} + (x_j*2 - sndmoment_{j,y})/ n_{j,c}

+ sigma_{j,c} = sgrt(sndmoment_{j,y} - mu_<{j,y}"2)
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Exercise: Non-stationarity

e Atheme in thought questions: “What if the distribution
changes over time?”

e Say you have trained your model so far, and now are getting
new data that is from a slightly different distribution (drift)

- Data could be coming from a physical system that wears out, such as
a robot vacuum collecting data where its wheels wear-out

-+ Data could reflect continually (but slowly) changes preferences in
human population

e How can we handle this?

- We can update parameters with this new data, and hope that works

* How can we give more weight



Exercise: Non-stationarity

e Atheme in thought questions: “What if the distribution
changes over time?”

e How can we handle this?

- Don’t want to throw away previous solution, since drift is slow so old
solution is still (mostly) reflective

- We can update parameters with this new data, and hope that works

- How can we give more weight to new data? Say for naive Bayes
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Exponential average

pe = axy + (1 — o)
ar; + (1 —a)(axi—1 + (1 — a)pus_o)
= azy +a(l — )z + (1 —a)?*(azi—s + (1 — ) pi—s3)

©.@)
— « Z(l —a)'xe_; 7
i=0

where 0 < a < 1

O

Z(l —a)' = é

1=0
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