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given the label. This assumption is demonstrated by the graphical model in
Figure 6.3.

As with logistic regression, even though we learn a generative model, the
decision rule for labeling a point as class 1 (i.e., y = 1) is

p(y = 1|x) � p(y = 0|x)

where now p(y = 1|x) = p(x|y = 1)p(y = 1). To start, we will assume a
simpler setting with binary features, and then address continuous features.
Note that naive Bayes is a linear classifier for binary features; more generally,
however, it is not necessarily a linear classifier. Note that a linear classifier is
one in which the two classes are separated by a linear plane, i.e., the decision
boundary is according to some linear combination of features.

6.2.1 Binary features and linear classification

Let D = {(xi, y}ni=1

be an input data set, where X = {0, 1}k and Y = {0, 1}.
Under the naive Bayes assumption, the features are independent given the
class label. Therefore, we can write

p(x|y) =
dY

i=1

p(xi|y).

A suitable choice for this simpler univariate probabilities is a Bernoulli dis-
tribution, since each xj is binary, giving

p(xj |y = c) = p
x
j

j,c(1� pjc)1�x
j

The parameters for the Bernoulli distributions are pj,c = p(xj = 1|y = c),
with a different parameter pj,c for each class value c and for each feature.
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Reminders/Comments

• Assignment 2 due this week

• Please see Touqir’s clarifications
• He is trying to make the outcomes more clear-cut

• Lectures are supposed to complement assignments
• assignments are for you to learn, run into real problems first hand

• Final exam will only include topics in the notes
• anything extra in lectures is for interest and context 
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Thought question

• Which optimization methods are more likely to overfit? 

• Is it more likely for Stochastic GD or Batch GD to overfit? 

• What about Second-order GD (i.e., Newton’s method)?
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Exercise questions

• What are the properties of different optimization approaches?
• e.g., why are we taking the derivative and setting it to zero?

• e.g., does the amount of data influence whether we obtain local or 
global solutions?

• e.g., does stochastic gradient descent result in local solutions?

• e.g., can gradient descent approaches only be used for convex 
problems?

• e.g., why would you use second-order gradient descent rather than 
first-order gradient descent? 
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Batch GD versus SGD

• What are some advantages of batch gradient descent?
• less noisy gradient

• more clear strategies for selecting stepsize

• What are some advantages of SGD?
• more computationally efficient: does not waste an entire epoch to 

provide an update to the weights

• convenient for updating current solution with new data

• Does batch always give better solutions than SGD?
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Classification so far
• Have been learning p(y | x)

• Either for binary classification, as a Bernoulli

• Or for multi-class classification, as a Multinomial

• These are called discriminative classifiers

• i.e., learning a function of x, to predict distribution over y, i.e, 
f(x) = p(y | x) 

• Do not learn the distribution over x itself

• Note: the classifiers have been linear so far, but this is not a 
requirement for discriminative classifiers, f can be a (highly) 
nonlinear function of x

6



Recall: Logistic regression
• Hyperplane                      separates the two classes

• P(y=1 | x, w) > 0.5 only when

• P(y=0 | x, w) > 0.5 only when P(y=1 | x, w) < 0.5, which happens 
when 

7

( , )x1 1y

( , )xi yi( , )x2 2y

w w w x0 1 2 2+ +x1 0=

x1

x2

+
+

+

+

+

+

+

+ +

Figure 6.1: A data set in R2 consisting of nine positive and nine negative
examples. The gray line represents a linear decision surface in R2. The
decision surface does not perfectly separate positives from negatives.

to f is a straightforward application of the maximum a posteriori principle:
the predicted output is positive if g(x) � 0.5 and negative if g(x) < 0.5.

6.1 Logistic regression

Let us consider binary classification in Rd, where X = Rd+1 and Y = {0, 1}.
The basic idea for many classification approaches is to hypothesize a closed-
form representation for the posterior probability that the class label is posi-
tive and learn parameters w from data. In logistic regression, this relation-
ship can be expressed as

P (Y = 1|x,w) =

1

1 + e�w

>
x

, (6.1)

which is a monotonic function of w>
x. Function �(t) =

�
1 + e�t

��1 is called
the sigmoid function or the logistic function and is plotted in Figure 6.2.

6.1.1 Predicting class labels

For a previously unseen data point x and a set of coefficients w⇤ found from
Eq. (6.4) or Eq. (6.11), we simply calculate the posterior probability as

P (Y = 1|x,w⇤
) =

1

1 + e�w

⇤T ·x .

If P (Y = 1|x,w⇤
) � 0.5 we conclude that data point x should be labeled as

positive (ŷ = 1). Otherwise, if P (Y = 1|x,w⇤
) < 0.5, we label the data point
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as negative (ŷ = 0). Thus, the predictor maps a (d+ 1)-dimensional vector
x = (x

0

= 1, x
1

, . . . , xd) into a zero or one. Note that P (Y = 1|x,w⇤
) � 0.5

only when w

>
x � 0. The expression w

>
x = 0 represents equation of a

hyperplane that separates positive and negative examples. Thus, the logistic
regression model is a linear classifier.

6.1.2 Maximum conditional likelihood estimation

To frame the learning problem as parameter estimation, we will assume that
the data set D = {(xi, yi)}ni=1

is an i.i.d. sample from a fixed but unknown
probability distribution p(x, y). Even more specifically, we will assume that
the data generating process randomly draws a data point x, a realization of
the random vector (X

0

= 1, X
1

, . . . , Xd), according to p(x) and then sets its
class label Y according to the Bernoulli distribution

p(y|x) =

8
<

:

⇣
1

1+e�!>
x

⌘y

⇣
1� 1

1+e�!>
x

⌘
1�y

for y = 1

for y = 0

(6.2)

= �(x>
w)

y
(1� �(x>

w))

1�y

where ! = (!
0

,!
1

, . . . ,!d) is a set of unknown coefficients we want to
recover (or learn) from the observed data D. Based on the principles of
parameter estimation, we can estimate ! by maximizing the conditional
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Discriminative versus generative
• Discriminative: learn p(y | x), as a function of x

• In generative learning, 
• learn p(x | y) p(y) (which gives the joint p(x, y) = p(x|y) p(y))

• compute p(x | y) p(y), which is proportional to p(y | x)

• Question: how do we use p(x|y) p(y) for prediction?

• Question: how do we learn p(x|y) and p(y)?

• Question: why might we want to use generative models?
8

p(y|x) = p(x|y)p(y)
p(x)



How to use generative models

• Our decision rule for using these probabilities is the same as 
with logistic regression: pick class with the highest probability

• Assume you have learned p(x | y) and p(y) from a dataset

• Compute

9

f(x) = argmax

y2Y
p(y|x)

= argmax

y2Y
p(x|y)p(y)/p(x)

= argmax

y2Y
p(x|y)p(y)



How to learn generative models

• For discriminative, had to choose distribution over y given x
• e.g. p(y | x) is Gaussian for continuous y

• e.g. p(y | x) is Poisson for y in {1, 2, 3, …}

• e.g. p(y | x) is Bernoulli for y in {0,1}

• Parameters to p(y | x) were w such that E[Y | x] = f(xw)

• Now we need to choose the distribution p(x | y) and p(y) 

• How do we pick p(x | y) and p(y)? What are the parameters?

10



How do we pick distributions 
more generally?

• For p(x), picked Gaussian, Bernoulli, Poisson, Gamma
• depending on the values x could take, or looking at a plot

• For conditional distributions, like p(y | x), we picked the 
distribution based on the properties of y 
• Once the given features x are fixed, are are just learning a 

distribution over y

• Imagine x is a 2-d Gaussian RV and y is a 1-d Gaussian

• What might you pick for p(x | y) and p(y)?

11



Another setting

• Imagine x is a 2-d Gaussian RV and y is a Bernoulli

• Now what might you pick for p(x | y) and p(y)?

12



What if there are lots of 
features?

• Imagine x is a 1000-d random variable and y is a Bernoulli

• How can we determine what type of distribution to pick for x?

• What if we decide its a 1000-d multivariate Gaussian RV. Any 
issues with learning mean mu and covariance Sigma?

13



Simplifying assumptions

• How do we realistically learn p(x | y)?

• One option is to make a (strong) conditional independence 
assumption: the features are independent given the label

14
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given the label. This assumption is demonstrated by the graphical model in
Figure 6.3.

As with logistic regression, even though we learn a generative model, the
decision rule for labeling a point as class 1 (i.e., y = 1) is

p(y = 1|x) � p(y = 0|x)

where now p(y = 1|x) = p(x|y = 1)p(y = 1). To start, we will assume a
simpler setting with binary features, and then address continuous features.
Note that naive Bayes is a linear classifier for binary features; more generally,
however, it is not necessarily a linear classifier. Note that a linear classifier is
one in which the two classes are separated by a linear plane, i.e., the decision
boundary is according to some linear combination of features.

6.2.1 Binary features and linear classification

Let D = {(xi, y}ni=1

be an input data set, where X = {0, 1}k and Y = {0, 1}.
Under the naive Bayes assumption, the features are independent given the
class label. Therefore, we can write

p(x|y) =
dY

i=1

p(xi|y).

A suitable choice for this simpler univariate probabilities is a Bernoulli dis-
tribution, since each xj is binary, giving

p(xj |y = c) = p
x
j

j,c(1� pjc)1�x
j

The parameters for the Bernoulli distributions are pj,c = p(xj = 1|y = c),
with a different parameter pj,c for each class value c and for each feature.
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Conditional independence 
assumption

• Example: given a patient has the disease (y=1), attributes 
about patient are uncorrelated (e.g., age & smokes)
• even within a class, age and smokes could be correlated

• Surprisingly, despite the fact that this seems unrealistic, in 
practice this can work okay
• one hypothesis is we are running these algorithms on “easy” data

• another is that dependencies skew the distribution equally across all 
classes, so no one class gets an increased probability
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Naive Bayes
• For naive Bayes, we learn p(x | y) and p(y) exactly given this 

conditional independence assumption
• For the classification setting

• Then we still need to choose p(xi | y) and p(y)

• What is p(y)?
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What if we have binary features?

• For binary features x in {0,1}, binary y in {0,1}, what is p(x | y)?

• How do we learn p(x | y)?

• How do we learn p(y)?

17



What if we have continuous features?

• For continuous features x, binary y in {0,1}, what could we 
choose for p(x | y)?
• e.g., 5 features

• Need to identify p(xi | y) — what could this be?

• What are the parameters and how do we learn them?

18



Continuous naive Bayes
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Exercise

• Imagine someone gives you p(x | y) and p(y)

• They give you a test instance, with features x
• e.g., x is an image, of pixel values (values between 0 to 255)

• Your goal is to predict the output y
• e.g., if the image contains a cat or not

• How do you use p(x | y) and p(y) to make a prediction?

20



Whiteboard

• Naive Bayes derivation

• Exercise showing how to use naive Bayes

• Exercise dealing with missing values

21



Thought question

• “I understand that there is always a tradeoff between bias and 
variance of a model, and that this is a crucial part of model 
optimization, but does this mean that we can't ever achieve 
100% accuracy, even in simple tasks like digit recognition?”
• Recall reducible and irreducible error

• Bias-variance is about selecting the model class (or function class)

• Choosing the function class influences reducible error; more powerful 
function classes can reduce this error more

• Irreducible error represents noise that we cannot model, and so we 
cannot ever achieve 100% accuracy

• Why might such noise exist?
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Exercise: Bias-variance for 
naive Bayes model

• Do you think naive Bayes has high bias and/or high variance?
• is naive Bayes unbiased?

• Recall: bias refers to error to the true function, in expectation

• is f(y) = p(x | y) an unbiased estimate of f^*(y)? 

• How do we compute bias and variance?

• naive Bayes can perform better in the small sample setting 
• see “On discriminative vs. generative classifiers: A comparison of 

logistic regression and naive Bayes”, Ng and Jordan, 2002
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Pros and Cons

• Discriminative
• focus learning on the value we care about: p(y | x)

• can be much simpler, particularly if features x complex: p(x | y) can 
be difficult to model without strong assumptions

• Generative
• can be easier for expert to encode prior beliefs, e.g., for classifying 

trees in evergreen or deciduous, structure/distribution over the 
features (height, location) can be more clearly specified by p(x | y), 
whereas p(y | x) does not allow this information to be encoded

• can sample from the generative model, obtain explanations 

• more amenable to missing values

24



Sampling from generative model
• How sample (x,y) from generative model p(x,y) = p(x | y) p(y)

• Sample y from p(y)

• Then sample x from p(x | y)

• Why would you do this? Let’s use the trees example again
• Could sample trees from p(x | y) to see what your model produces

• Could answer additional questions about the features, such as average 
leaf diameter in population

• Could depict average tree, within a type or across types

• Question: how would you do it within a type (deciduous or coniferous)?

• Question: how would you do it across types?

• More realistic example for explanations: obtain profile of typical person 
with heart disease25



Other generative models
• Often use generative models for images (markov random field)

• e.g., can model the spatial structure in the distribution p(x | y)

• We know a lot about image structure, can take advantage of that 
expert knowledge in choice of p(x | y)
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Thought question

• Is it possible to provide a prediction and an estimate of how 
confident we are in that prediction?
• “Let's say the data you are modeling is inherently high-variance and it 

may not be appropriate to give exact estimates for new data. Is it 
possible to generate a distribution range, i.e., the outcome will likely 
fall within some N(mu, sigma^2)”

• For p(y | x) Gaussian, we could try to estimate mean mu = 
<x,w> and estimate variance sigma^2
• when predict E[Y | x], have a sense of how much y can vary

• But what if our estimates are wrong? To be confident in 
predictions, want estimate of confidence in parameters

27



Practical considerations: 
incorporating new data

• Imagine you have a discriminative model (say weights w) and 
now want to incorporate new data

• How can you do this with regression approaches?

• Option 1: add data to your batch and recompute entire solution 

• Option 2: start from previous w (warm start), add data to your 
batch and do a few gradient descent steps

• Option 3: use stochastic gradient descent update and step in 
the direction of the gradient for those samples
• for a constant stream of data, will only ever use one sample and then 

throw it away
28



How about naive Bayes?

• How can we update means and covariances in naive Bayes 
model?

• Learned mu_{j,c} and sigma_{j,c} for each feature j, each 
class c
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Updating naive Bayes model

• Keep a running average of mu_{j,c} and sigma_{j,c}, with 
number of samples n_{j,c} for feature j class c

• For a new sample (x, y), update parameters mu_{j,y} and 
sigma_{j,y} using: 
• mu_{j,y} = mu_{j,y} + (x_j - mu_{j,y})/ n_{j,c}

• sndmoment_{j,y} = sndmoment_{j,y} + (x_j^2 - sndmoment_{j,y})/ n_{j,c}

• sigma_{j,c} = sqrt(sndmoment_{j,y} - mu_{j,y}^2)
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Exercise: Non-stationarity
• A theme in thought questions: “What if the distribution 

changes over time?”

• Say you have trained your model so far, and now are getting 
new data that is from a slightly different distribution (drift)
• Data could be coming from a physical system that wears out, such as 

a robot vacuum collecting data where its wheels wear-out

• Data could reflect continually (but slowly) changes preferences in 
human population

• How can we handle this?
• We can update parameters with this new data, and hope that works

• How can we give more weight
31



Exercise: Non-stationarity

• A theme in thought questions: “What if the distribution 
changes over time?”

• How can we handle this?
• Don’t want to throw away previous solution, since drift is slow so old 

solution is still (mostly) reflective

• We can update parameters with this new data, and hope that works

• How can we give more weight to new data? Say for naive Bayes
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Exponential average
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