
Multiclass classification



Reminders/Comments

• Assignment 2 updates
• Clarification on step-size selection

• Clarification on reported l2err

• Appreciate feedback
• Quick comments about mini quiz
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Thought question: regularization

• “In regards to the bias variance trade-off and to figure 5.5, it 
seems that finding an optimum model complexity could in itself 
be an ML problem, where we minimize some f(lambda) for our 
regularization parameter. Therefore, can we not formulate a 
problem where given a set of function classes and possible 
parameters, which can find an optimal regularization 
parameter automatically?”
• Any suggested objectives to minimize, min_lambda obj(lambda)?
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Other regularizers
• Have discussed l2 and l1 regularizers

• Other examples: 
• elastic net regularization is a combination of l1 and l2 (i.e., l1 + l2): 

ensures a unique solution

• capped regularizers: do not prevent large weights
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* Figure from “Robust Dictionary Learning with Capped l1-Norm”, Jiang et al., IJCAI 2015

Does this regularizer 
still protect against 

overfitting?



Adding regularizers to GLMs
• How do we add regularization to logistic regression?

• We had an optimization for logistic regression to get w: 
minimize negative log-likelihood, i.e. minimize cross-entropy

• Now want to balance negative log-likelihood and regularizer 
(i.e., the prior for MAP)

• Simply add regularizer to the objective function
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Adding a regularizer to logistic 
regression

• Original objective function for logistic regression
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It does not take much effort to realize that there is no closed-form solution to rll(w) = 0
(we did have this luxury in linear regression, but not here). Thus, we have to proceed
with iterative optimization methods. We will calculate rll(w) and Hll(w)

to enable either
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where fj is the j-th column (feature) of data matrix X, y is an n-dimensional column vector
of class labels and p is an n-dimensional column vector of (estimated) posterior probabilities
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Practical considerations: outliers
• What happens if one sample is bad?

• Regularization helps a little bit

• Can also change losses

• Robust losses
• use l1 instead of l2

• even better: use capped l1

• What are the disadvantages to these losses?
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Weighting importance of 
samples and features

• Last class we added a weighting c_i >= 0 to indicate 
importance of a sample 

• Now imagine you have added l1 regularization, for feature 
selection: 

• What if we want to weight features, and say feature j is a 
useful feature that should not be removed?
• could have different regularization parameter for each feature

• large regularization parameter more likely to cause that feature to be 
pushed to zero or not used, with a small parameter saying that a 
feature should be used
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Exercise: intercept unit

• In linear regression, we added an intercept unit (bias unit) to 
the features
• i.e., added a feature that is always 1 to the feature vector

• Does it make sense to do this for GLMs?
• e.g., sigmoid(<x,w> + w_0)

9



Adding a column of ones to 
GLMs

• This provides the same outcome as for linear regression

• g(E[y | x]) = x w  —> bias unit in x with coefficient w0 shifts the 
function left or right

10
*Figure from http://stackoverflow.com/questions/2480650/role-of-bias-in-neural-networks

http://stackoverflow.com/questions/2480650/role-of-bias-in-neural-networks


Multi-class and Multi-label

• Multi-class: have multiple classes, with each instance only in 
one class
• e.g., a person can only have one blood type

• Multi-label: have multiple classes, where each instance can 
have multiple class labels
• e.g., a newspaper article can be a sports article and medicine article
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Exercise: problem 
representation for classification

• What if have many classes (e.g., image classification)?
• Example: classify written digit (e.g., 7 or 3)

• Example: classify images based on presence of an object (e.g., cat)

• Is image classification multi-class or multi-label?

• What other settings can you                                                             
imagine with many classes?

12

How can we learn this?



Exercise: problem 
representation for classification

• What if have many many classes (e.g., image classification)?
• Example: classify written digit (e.g., 7 or 3)

• Example: classify images based on presence of an object (e.g., cat)

• Is image classification multi-class or multi-label?

• One approach for either multi-class or multi-label: learn one 
logistic regression model for each class
• For each sample, 

• What are the issues here?

• What other techniques can we use for multi-class and multi-label?
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One-vs-all
• Learn binary classifier for each class, w1, …, wk

• i.e., weights w2 predict if the sample is either class 2 or its not

• If training sample x is class 2, then weights w2 get label y = 1 and the 
weights wi for the other classes get a label of y = 0

• Once have wi, how do we predict on a new sample?
• e.g., w1, w2 w3, 

• p(y = 1 | x, w1) = 0.9.    p(y = 1 | x, w2) = 0.6.      p(y = 1 | x, w3) = 0.1

• For multi-class, pick class such that p(y = 1 | x, wi) is largest
• In this example that is class 1

• For multi-label, pick classes such that p(y = 1 | x, wi) > 0.5
• In this example that is class 1 and 2
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One-vs-all for multi-class

• Learn binary classifier for each class, w1, …, wk
• i.e., weights w2 predict if the sample is either class 2 or its not

• If training sample x is class 2, then weights w2 get label y = 1 and the 
weights wi for the other classes get a label of y = 0

• Once have wi, how do we predict on a new sample?
• p(y = 1 | x, w1) = 0.9.    p(y = 1 | x, w2) = 0.6.      p(y = 1 | x, w3) = 0.1

15

• What are the issues with this approach for multi-class? 
• see many more negative samples

• have to compare confidence p(y=1 | x) between different classes, but 
scale could be different



One-vs-all for multi-label
• Called binary relevance for multi-label

• What are the issues with one-vs-rest for multi-label?
• class independence assumption

• Do not take advantage of relationships between classes
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• Learn binary classifier for each class, w1, …, wk
• i.e., weights w2 predict if the sample is either class 2 or its not

• If training sample x is class 2, then weights w2 get label y = 1 and the 
weights wi for the other classes get a label of y = 0

• Once have wi, how do we predict on a new sample?
• p(y = 1 | x, w1) = 0.9.    p(y = 1 | x, w2) = 0.6.      p(y = 1 | x, w3) = 0.1



One-vs-one for multi-class

• Learn k (k-1)/2 binary classifiers, with voting scheme: class 
with most positive predictions is outputted

• For k = 3 (three classes), train class 1 vs class 2 (p_12), class 
1 vs 3 (p_13), class 2 vs 3 (p_23)

• Predict with 

• Notice this uses p_{31}, but I didn’t train that. Where does it 
come from?

17
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Advantages to vs-all or vs-one
• Imagine you have a dataset with n samples, d features, k classes

• When might vs-all or vs-one be better? 
• Vs-one has to train about k^2 models, can be expensive!

• But, gets to train k^2 models on a subset of the data (about 2 n / k if the 
data is balanced, i.e., equal number of each class)

• If n = 1 million and k = 10, which one might be better?

• Which learning methods might prefer one or the other?
• If method scales poorly with sample, vs-all might be better

• If method can share solutions across classes, vs-all might be better

18



Other approaches for multi-class

• naive Bayes (generative model)

• Instance-based approaches (e.g. k-NN)
• keep a representative set of samples, compare to these points and what 

labels they had

• Hierarchical classification

• Multinomial logistic regression

19



Multinomial distributions
• Extend binary GLM (logistic regression) to multi-class, by moving 

from Bernoulli to Multinomial

• What does target y look like?

• y = [0 1 0 0] means that instance is in class 2 out of 4 classes

• What distribution matches such a target?
• Clearly not Bernoulli, where its only zero or 1

• Clearly not Gaussian…

20



Multinomial distributions
• Extend binary GLM (logistic regression) to multi-class, by moving 

from Bernoulli to Multinomial

• Multinomial distribution is probability of n successes in k Bernoulli 
trials

21

6 To simulate a multinomial distribution
7 Related distributions
8 References

Specification

Probability mass function

Suppose one does an experiment of extracting n balls of k different colours from a bag, replacing the extracted
ball after each draw. Balls from the same colour are equivalent. Denote the variable which is the number of
extracted balls of colour i (i = 1, ..., k) as Xi, and denote as pi the probability that a given extraction will be in
colour i. The probability mass function of this multinomial distribution is:

for non-negative integers x1, ..., xk.

The probability mass function can be expressed using the gamma function as:

This form shows its resemblance to the Dirichlet distribution which is its conjugate prior.

Visualization

As slices of generalized Pascal's triangle

Just like one can interpret the binomial distribution as (normalized) 1D slices of Pascal's triangle, so too can
one interpret the multinomial distribution as 2D (triangular) slices of Pascal's pyramid, or 3D/4D/+ (pyramid-
shaped) slices of higher-dimensional analogs of Pascal's triangle. This reveals an interpretation of the range of
the distribution: discretized equilaterial "pyramids" in arbitrary dimension—i.e. a simplex with a grid.

As polynomial coefficients

Similarly, just like one can interpret the binomial distribution as the polynomial coefficients of 
 when expanded, one can interpret the multinomial distribution as the coefficients of 

 when expanded. (Note that just like the binomial distribution, the
coefficients must sum to 1.) This is the origin of the name "multinomial distribution".

Since y is still discrete, we can approximate p(y) using counts as before. The maximum
likelihood mean and variance parameters correspond to the sample mean and sample co-
variance for each given class separately. This involves computing the mean and variance of
feature j across the datapoints labeled with class c:
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Exercise: Derive the maximum likelihood formulation for a Gaussian naive Bayes model,
and check that the solution does in fact match the sample mean and variance for each feature
and class separately, as above.

6.3 Multinomial logistic regression

Now let us consider discriminative multiclass classification, where X = Rd and Y = {1, 2, . . . , k}.
This setting arises naturally in machine learning, where there is often more than two cate-
gories. For example, if we want to predict the blood type (A, B, AB and O) of an individual,
then we have four classes. Here we discuss multiclass classification where we only want to
label a datapoint with one class out of k. In other settings, one might want to label a
datapoint with multiple classes; this is briefly mentioned at the end of this section.

We can nicely generalize to this setting using the idea of multinomials and the cor-
responding link function, as with the other generalized linear models. The multinomial
distribution is a member of the exponential family. We can write
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class. The parameters can be represented as a matrix W 2 Rd⇥k where W = [w
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is composed of k weight vectors with wk = 0. We will see why we fix wk = 0.
The transfer (inverse of the link) for this setting is the softmax transfer
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and the prediction is softmax(x) =

ˆy 2 [0, 1]k, which gives the probability in each entry
of being labeled as that class, where ˆy>1 = 1 signifying that the probabilities sum to

77

We have n = 1, e.g. y = [1 0 0 0]



Predictions

• Targets look like y = [0 1 0 0], meaning that instance is in class 
2 out of 4 classes

• For a new sample, we predict                                               
[p(y=1 | x), p(y = 2| x), …, p(y = k | x)]

• Example: [0.1 0.2 0.6 0.1] suggests we should pick class y = 
3, since it has the highest probability

• How do we generate such a vector of probabilities?
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Multinomial logistic regression

• y = [0 1 0 0] means that instance is in class 2 out of 4 classes

• Let k be the number of classes, n = 1 for 1 success

• The transfer (inverse of link) is the softmax transfer
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learned independently, because they are tied by the probability for the last
class. The parameters can be represented as a matrix W 2 Rd⇥k where
W = [w
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and the prediction is softmax(x) = ˆy 2 [0, 1]k, which gives the probability in
each entry of being labeled as that class, where ˆy>1 = 1 signifying that the
probabilities sum to 1. Note that this model encompasses the binary setting
for logistic regression, because �(x>w) = (1+exp(�x>w))
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With the parameters of the model parameterized by W and the softmax

transfer, we can determine the maximum likelihood formulation. By plugging
in the parameterization into Equation (6.12), taking the negative log of that
likelihood and dropping constants, we arrive at the following loss
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Since y is still discrete, we can approximate p(y) using counts as before. The maximum
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Softmax transfer
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W = [w
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, . . . ,wk] is composed of k weight vectors with wk = 0. We will
see why we fix wk = 0.
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and the prediction is softmax(x) = ˆy 2 [0, 1]k, which gives the probability in
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probabilities sum to 1. Note that this model encompasses the binary setting
for logistic regression, because �(x>w) = (1+exp(�x>w))
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and

that
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p(y = j|x) = 1.
With the parameters of the model parameterized by W and the softmax

transfer, we can determine the maximum likelihood formulation. By plugging
in the parameterization into Equation (6.12), taking the negative log of that
likelihood and dropping constants, we arrive at the following loss
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Relation to logistic regression
• For k= 2, y = [0 1] or y = [1 0]
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1. Note that this model encompasses the binary setting for logistic regression, because
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with two classes are then W = [w, 0] giving
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that p(y = k|x) = exp(x>wk)
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With the parameters of the model parameterized by W and the softmax transfer, we

can determine the maximum likelihood formulation. By plugging in the parameterization
into Equation (6.12), taking the negative log of that likelihood and dropping constants, we
arrive at the following loss

min
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As before, we do not have a closed form solution for this gradient, and will use iterative
methods to solve for W. Note that here, unlike previous methods, we have a constraint on
part of the variable. However, this was solely written this way for convenience. We do not
optimize W

:k, as it is fixed at zero; one can rewrite this minimization and gradient to only
apply to the W

:(1:k�1)

. This corresponds to initializing W
:k = 0, and then only using the

first k � 1 columns of the gradient in the update to W
:(1:k�1)

.
The final prediction softmax(x>W) 2 [0, 1] gives the probabilities of being in a class.

As with logistic regression, to pick one class, the highest probability value is chosen. For
example, with k = 4, we might predict [0.1 0.2 0.6 0.1] and so decide to classify the point
into class 3.

Remark about overlapping classes: If you want to predict multiple classes for a data-
point x, then a common strategy is to learn separate binary predictors for each class. Each
predictor is queried separately, and a datapoint will label each class as 0 or 1, with poten-
tially more than one class having a 1. Above, we examined the case where the datapoint
was exclusively in one of the provided classes, by setting n = 1 in the multinomial.
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Relation to logistic regression…
• In general, setting w_k to zero is a convention

• could choose any of the classes, e.g., could learn p(y = 1 | x)

• Normalization enforces constraint on w_k (or on one of the 
classes), so can set w_k = 0
• Exercise: show that setting w_k = 0 is also required to ensure that 

the softmax transfer is invertible
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Summary of multinomial logistic 
regression

• p(y | x) is a multinomial distribution

• Corresponding transfer is the softmax transfer with w_k = 0

• Prediction on new x is

•  softmax(xW) = [p(y=1 | x), p(y = 2| x), …, p(y = k | x)]
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Learning strategy

• Using the minimization obtained for our generalized linear 
models, we can plug in the transfer to get
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apply to the W
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. This corresponds to initializing W
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The final prediction softmax(x>W) 2 [0, 1] gives the probabilities of being in a class.

As with logistic regression, to pick one class, the highest probability value is chosen. For
example, with k = 4, we might predict [0.1 0.2 0.6 0.1] and so decide to classify the point
into class 3.

Remark about overlapping classes: If you want to predict multiple classes for a data-
point x, then a common strategy is to learn separate binary predictors for each class. Each
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tially more than one class having a 1. Above, we examined the case where the datapoint
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Exercise: nonlinear GLMs

• In linear regression, we used nonlinear expansions on the 
features to get nonlinear learning
• e.g., convert x to polynomials

• Can we do the same for logistic regression or multinomial 
logistic regression?

• Why would we want to? Aren’t GLMs already nonlinear?
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