|_ogistic regression



Comments

e Mini-review and feedback

e These are equivalent: X' 'w=w x

e Clarification: this course is about getting you to be able to
think as a machine learning expert

« There has to be some confusion to start

A bit different than other courses, where need to learn a topic x (e.g.,
calculus) without really needing to understand why you learn topic x

« Here you are being trained to think about how to formulate a problem,
solve the problem and evaluate the problem all at once

Keeping it all straight takes some time



Exercise: what is c(w)?

e Recall when we did MLE (maximum likelihood) for Poisson

e Assumed p(x) was Poisson, learned lambda

v, = argmax {p(D|A)}

—Inp(D|A)
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Why Is Poisson regression more
complicated?

e Estimated lambda for Poisson p(y), had closed form

e Estimated Poisson p(y | x), no longer have closed form!
. Why not?!

e \Why do we focus on Poisson distribution?

 Just a canonical example, not necessarily particularly important

e Why do variable names change?

« Previously had lambda and now have w?

-

- lambda is now a function of x, i.e., A\ = exp(x W)



Poisson regression

0.40—

p(y|x) = Poisson(y|\ = exp(x'w)) 0 35

1. log(E[y|x]) = w!x

2. p(y|x) = Poisson(\)
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For exponential families, transfer
f corresponds to derivate of a

p(y|0) = exp(8y — a(0) + b(y))
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Examples

e (Gaussian distribution

a(0) = %92 f(0) =0

e Poisson distribution

a(0) = exp(h) f(0) = exp(0)

e Bernoulli distribution

a(0) = (1 + exp(0))  f(0)

0 =x'w




Exercise: How do we extract the
form for the exponential distribution?

Aexp(—Ay) A= J0)
0=f"(\

e Recall exponential family distribution

p(y|0) = exp(0y — a(0) + b(y))

e How do we write the exponential distribution this way?

e \What is the transfer f?



What is c(w) for GLMS?

Still formulating an optimization problem to predict targets y
given features x

The variables we learn is the weight vector w
Whatis c(w)? MLE : ¢(w) x — Inp(D|w)
n
X — Z In p(y; |x;w)
i=1

arg min ¢(w) = arg max p(D|w)

Can we add regularization? How?
Add a prior, do MAP!



Extra exercises

e (o through the derivation of c(w) for logistic regression

e Derive Maximum Likelihood objective in Section 8.1.2
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Benefits of GLMs

e (Gave a generic update rule, where you only needed to know
the transfer for your chosen distribution

* e.g., linear regression with transfer f = identity
* e.qg., Poisson regression with transfer f = exp

* e.g., logistic regression with transfer f = sigmoid

e We know the objective is convex in w!



Convexity

e Convexity of negative log likelihood of (many) exponential families

* The negative log likelihood of many exponential families is convex, which
IS an important advantage of the maximum likelihood approach

* Why is convexity important?

* e.g., why is (sigmoid(xw) - y)*2 not a good choice for binary classification?

- Euclidean loss (squared loss) for sigmoid results in a non-convex function

Starting
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How can we check convexity?

e (Can check the definition of convexity

fliry + (1 —=1)xp) < tf(x1) + (1 =) f(x2)

e Can check second derivative for scalar parameters (e.g. )\ )
and Hessian for multidimensional parameters (e.g., w )

 e.g., for linear regression (least-squares), the Hessianis H — XTX
and so clearly positive semi-definite

* e.g., for Poisson regression, the Hessian of the negative log-
likelihoodis H — XTCX and so clearly positive semi-definite



Logistic regression

1. logit(Efy|x]) = wTx a=p(y = 1|x)
2. p(y|x) = Bernoulli(«) g(XTW) _ 1Og1t(XTW)
where logit(z) = In == , y € {0,1}, and a € (0,1) f(XTW) _ g_l (XTW)
| = sigmoid(x ' w)
Elylx] = | + e—w'x — ":[y|X]

-5 0
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Prediction with logistic
regression

So far, we have used the prediction f(xw)

* eg., xw for linear regression, exp(xw) for Poisson regression

For binary classification, want to output O or 1, rather than the
probability value p(y = 1 | x) = sigmoid(xw)

Sigmoid has few values xw mapped close to 0.5; most values
somewhat larger than 0 are mapped close to 0 (and vice versa for -

1

Decision threshold: I = e

0.81

0.7

 sigmoid(xw) < 0.5is class 0

« sigmoid(xw) > 0.5 is class 1
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Logistic regression Is a linear
classifier

e Hyperplane w'x = 0 separates the two classes

« P(y=11x, w)>0.5only when w'!x > 0.

« P(y=01x, w)>0.5only when P(y=1 | x, w) < 0.5, which happens
when w ' x < ()
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Logistic regression versus linear
regression

e Why might one be better than the other? They both use a

linear approach

e Linear regression could still learn <x, w> to predict E[Y | X]

e Demo: logistic regression performs better under outliers, when

the outlier is still on the correct side of the line

e Conclusion:

* logistic regression better reflects the goals of predicting p(y=1 | x), to
finding separating hyperplane

 Linear regression assumes E[Y | x] a linear function of x!
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Whiteboard

e [ogistic regression
- maximum likelihood with weightings on samples
+ optimization strategy

* Issues with minimizing Euclidean distance for sigmoid
e Multinomial logistic regression

e Next class:

* generative approach: naive Bayes



