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Comments

• Mini-review and feedback

• These are equivalent: 

• Clarification: this course is about getting you to be able to 
think as a machine learning expert
• There has to be some confusion to start

• A bit different than other courses, where need to learn a topic x (e.g., 
calculus) without really needing to understand why you learn topic x

• Here you are being trained to think about how to formulate a problem, 
solve the problem and evaluate the problem all at once

• Keeping it all straight takes some time
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Exercise: what is c(w)?
• Recall when we did MLE (maximum likelihood) for Poisson

• Assumed p(x) was Poisson, learned lambda
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optimal models is referred to as inferential statistics. The posterior distribution is sometimes
referred to as inverse probability.

Finding f
MAP

can be greatly simplified because p(D) in the denominator does not a�ect
the solution. We shall re-write Equation (3.1) as

p(f |D) = p(D|f) · p(f)
p(D)

Ã p(D|f) · p(f),

where Ã is the proportionality symbol. Thus, we can find the MAP solution by solving the
following optimization problem

f
MAP

= arg max
fœF

{p(D|f)p(f)} .

In some situations we may not have a reason to prefer one model over another and can
think of p(f) as a constant over the model space F . Then, maximum a posteriori estimation
reduces to the maximization of the likelihood function; i.e.,

f
ML

= arg max
fœF

{p(D|f)} .

We will refer to this solution as the maximum likelihood solution. Formally speaking, the
assumption that p(f) is constant is problematic because a uniform distribution cannot be
always defined (say, over R), though there are some solutions to this issue using improper
priors. Nonetheless, it may be useful to think of the maximum likelihood approach as a
separate technique, rather than a special case of MAP estimation, but keep this connection
in mind.

Observe that MAP and ML approaches report solutions corresponding to the mode of
the posterior distribution and the likelihood function, respectively. We shall later contrast
this estimation technique with the view of the Bayesian statistics in which the goal is to
minimize the posterior risk. Such estimation typically results in calculating conditional
expectations, which can be complex integration problems. From a di�erent point of view,
MAP and ML estimates are called point estimates, as opposed to estimates that report
confidence intervals for a particular group of parameters.
Example 9: Suppose data set D = {2, 5, 9, 5, 4, 8} is an i.i.d. sample from a Poisson
distribution with a fixed but unknown parameter ⁄

0

. Find the maximum likelihood estimate
of ⁄

0

.
The probability density function of a Poisson distribution is expressed as p(x|⁄) =

⁄xe≠⁄/x!, with some parameter ⁄ œ R+. We will estimate this parameter as

⁄
ML

= arg max
⁄œ(0,Œ)

{p(D|⁄)} . (3.2)

We can write the likelihood function as

p(D|⁄) = p({xi}n
i=1

|⁄)

=
nŸ

i=1

p(xi|⁄)

= ⁄
qn

i=1 xi · e≠n⁄

rn
i=1

xi!
.

39

min
w

c(w)

w = �

c(w) = � ln p(D|�)



Why is Poisson regression more 
complicated?

• Estimated lambda for Poisson p(y), had closed form 

• Estimated Poisson p(y | x), no longer have closed form!
• Why not?!

• Why do we focus on Poisson distribution?
• Just a canonical example, not necessarily particularly important

• Why do variable names change?
• Previously had lambda and now have w?

• lambda is now a function of x, i.e.,  
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p(y|x) = Poisson(y|� = exp(x

>
w))



Poisson regression
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5.1 Loglinear link and Poisson distribution

Let us start with an example. Assume that data points correspond to cities in
the world (described by some numerical features) and that the target variable
is the number of sunny days observed in a particular year. To establish the
GLM model, we will assume (1) a loglinear link between the expectation of
the target and linear combination of features, and (2) the Poisson distribution
for the target variable. We summarize these assumptions as follows

1. log(E[y|x]) = !

T
x

2. p(y|x) = Poisson(�)

where � > 0 is the parameter (mean and variance) of the Poisson distri-
bution. Exploiting the fact that E [y|x] = �, we connect the two formulas
using � = e!

T

x. In fact, because � 2 R+ and !

T
x 2 R, it is not appropriate

to use a linear link between E[y|x] and !

T
x (i.e. E[y|x] = !

T
x). The link

function adjusts the range of the linear combination of features (so-called
systematic component) to the domain of the parameters (here, mean) of the
probability distribution.

We provide a compact summary of the above assumptions via a proba-
bility distribution for the target; i.e. p(y|x) = Poisson(e!T

x

). We express
this as

p(y|x) = e!
T

xy · e�e!
T

x

y!

for any y 2 N. We will now use the maximum likelihood estimation to find
the parameters of the regression model. As in previous sections, the likeli-
hood function has the form of the probability distribution, where the data
set is observed and the parameters are unknown. Hence, the log-likelihood
function has the form

ll(w) =

nX

i=1

w

T
xiyi �

nX

i=1

ew
T

x

i �
nX

i=1

yi!

It is easy to show that rll(w) = 0 does not have a closed-form solution.
Therefore, we will use the Newton-Raphson method in which we must first
analytically find the gradient vector rll(w) and the Hessian matrix Hll(w)

.
We start by deriving the j-th element of the gradient
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p(y|x) = Poisson(y|� = exp(x

>
w))

For exponential families, transfer 
f corresponds to derivate of a

p(y|✓) = exp(✓y � a(✓) + b(y))



Examples
• Gaussian distribution

• Poisson distribution

• Bernoulli distribution
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a(✓) =
1

2
✓2 f(✓) = ✓

✓ = x

>
w

a(✓) = exp(✓) f(✓) = exp(✓)

a(✓) = ln(1 + exp(✓)) f(✓) =
1

1 + exp(�✓)



Exercise: How do we extract the 
form for the exponential distribution?

• Recall exponential family distribution

• How do we write the exponential distribution this way?

• What is the transfer f?
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� exp(��y)

p(y|✓) = exp(✓y � a(✓) + b(y))

� = f(✓)

✓ = f�1(�)



What is c(w) for GLMS?

• Still formulating an optimization problem to predict targets y 
given features x

• The variables we learn is the weight vector w

• What is c(w)?

• Can we add regularization? How?
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MLE : c(w) / � ln p(D|w)

/ �
nX

i=1

ln p(yi|xiw)

argmin

w
c(w) = argmax

w
p(D|w)

Add a prior, do MAP!



Extra exercises

• Go through the derivation of c(w) for logistic regression

• Derive Maximum Likelihood objective in Section 8.1.2
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Benefits of GLMs

• Gave a generic update rule, where you only needed to know 
the transfer for your chosen distribution
• e.g., linear regression with transfer f = identity

• e.g., Poisson regression with transfer f = exp

• e.g., logistic regression with transfer f = sigmoid

• We know the objective is convex in w!
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Convexity
• Convexity of negative log likelihood of (many) exponential families

• The negative log likelihood of many exponential families is convex, which 
is an important advantage of the maximum likelihood approach

• Why is convexity important?
• e.g., why is (sigmoid(xw) - y)^2 not a good choice for binary classification?

• Euclidean loss (squared loss) for sigmoid results in a non-convex function
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How can we check convexity?

• Can check the definition of convexity

• Can check second derivative for scalar parameters (e.g.      ) 
and Hessian for multidimensional parameters (e.g.,     )
• e.g., for linear regression (least-squares), the Hessian is                

and so clearly positive semi-definite

• e.g., for Poisson regression, the Hessian of the negative log-
likelihood is                                 and so clearly positive semi-definite

12

�
w

Convex function on an interval.

A function (in black) is convex if and only if the
region above its graph (in green) is a convex set.

Convex function
From Wikipedia, the free encyclopedia

In mathematics, a real-valued function f(x) defined on an interval is

called convex (or convex downward or concave upward) if the line

segment between any two points on the graph of the function lies above

or on the graph, in a Euclidean space (or more generally a vector space)

of at least two dimensions. Equivalently, a function is convex if its

epigraph (the set of points on or above the graph of the function) is a

convex set. Well-known examples of convex functions are the quadratic

function  and the exponential function  for any

real number x.

Convex functions play an important role in many areas of mathematics.

They are especially important in the study of optimization problems

where they are distinguished by a number of convenient properties. For

instance, a (strictly) convex function on an open set has no more than

one minimum. Even in infinite-dimensional spaces, under suitable

additional hypotheses, convex functions continue to satisfy such

properties and, as a result, they are the most well-understood functionals

in the calculus of variations. In probability theory, a convex function

applied to the expected value of a random variable is always less than or

equal to the expected value of the convex function of the random

variable. This result, known as Jensen's inequality, underlies many

important inequalities (including, for instance, the arithmetic–geometric

mean inequality and Hölder's inequality).

Exponential growth is a special case of convexity. Exponential growth

narrowly means "increasing at a rate proportional to the current value",

while convex growth generally means "increasing at an increasing rate (but not necessarily proportionally to current value)".
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Definition

Let X be a convex set in a real vector space and let f : X → R be a function.

f is called convex if:

f is called strictly convex if:

H = X>CX

H = X>X



Logistic regression
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the full version of the Newton-Raphson algorithm with the Hessian matrix.
Instead, Gauss-Newton and other types of solutions are considered and are
generally called iteratively reweighted least-squares (IRLS) algorithms in the
statistical literature.

5.4 Logistic regression

At the end, we mention that GLMs extend to classification. One of the most
popular uses of GLMs is a combination of a Bernoulli distribution with a
logit link function. This framework is frequently encountered and is called
logistic regression. We summarize the logistic regression model as follows

1. logit(E[y|x]) = !

T
x

2. p(y|x) = Bernoulli(↵)

where logit(x) = ln

x
1�x , y 2 {0, 1}, and ↵ 2 (0, 1) is the parameter (mean)

of the Bernoulli distribution. It follows that

E[y|x] = 1

1 + e�!

T

x

and

p(y|x) =
✓

1

1 + e�!T

x

◆y ✓
1� 1

1 + e�!T

x

◆
1�y

.

Given a data set D = {(xi, yi)}ni=1

, where xi 2 Rk and yi 2 {0, 1}, the pa-
rameters of the model w can be found by maximizing the likelihood function.
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Figure 6.2: Sigmoid function in [�5, 5] interval.

as negative (ŷ = 0). Thus, the predictor maps a (d+ 1)-dimensional vector
x = (x

0

= 1, x
1

, . . . , xd) into a zero or one. Note that P (Y = 1|x,w⇤
) � 0.5

only when w

>
x � 0. The expression w

>
x = 0 represents equation of a

hyperplane that separates positive and negative examples. Thus, the logistic
regression model is a linear classifier.

6.1.2 Maximum conditional likelihood estimation

To frame the learning problem as parameter estimation, we will assume that
the data set D = {(xi, yi)}ni=1

is an i.i.d. sample from a fixed but unknown
probability distribution p(x, y). Even more specifically, we will assume that
the data generating process randomly draws a data point x, a realization of
the random vector (X

0

= 1, X
1

, . . . , Xd), according to p(x) and then sets its
class label Y according to the Bernoulli distribution

p(y|x) =

8
<

:

⇣
1

1+e�!>
x

⌘y

⇣
1� 1

1+e�!>
x

⌘
1�y

for y = 1

for y = 0

(6.2)

= �(x>
w)

y
(1� �(x>

w))

1�y

where ! = (!
0

,!
1

, . . . ,!d) is a set of unknown coefficients we want to
recover (or learn) from the observed data D. Based on the principles of
parameter estimation, we can estimate ! by maximizing the conditional
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↵ = p(y = 1|x)
g(x>

w) = logit(x

>
w)

f(x>
w) = g�1

(x

>
w)

= sigmoid(x

>
w)

= E[y|x]



Prediction with logistic 
regression

• So far, we have used the prediction f(xw)
• eg., xw for linear regression, exp(xw) for Poisson regression

• For binary classification, want to output 0 or 1, rather than the 
probability value p(y = 1 | x) = sigmoid(xw)

• Sigmoid has few values xw mapped close to 0.5; most values 
somewhat larger than 0 are mapped close to 0 (and vice versa for 1) 

• Decision threshold: 
• sigmoid(xw) < 0.5 is class 0 

• sigmoid(xw) > 0.5 is class 1
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w)

y
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where ! = (!
0

,!
1

, . . . ,!d) is a set of unknown coefficients we want to
recover (or learn) from the observed data D. Based on the principles of
parameter estimation, we can estimate ! by maximizing the conditional
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Logistic regression is a linear 
classifier

• Hyperplane                      separates the two classes
• P(y=1 | x, w) > 0.5 only when

• P(y=0 | x, w) > 0.5 only when P(y=1 | x, w) < 0.5, which happens 
when 
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Figure 6.1: A data set in R2 consisting of nine positive and nine negative
examples. The gray line represents a linear decision surface in R2. The
decision surface does not perfectly separate positives from negatives.

to f is a straightforward application of the maximum a posteriori principle:
the predicted output is positive if g(x) � 0.5 and negative if g(x) < 0.5.

6.1 Logistic regression

Let us consider binary classification in Rd, where X = Rd+1 and Y = {0, 1}.
The basic idea for many classification approaches is to hypothesize a closed-
form representation for the posterior probability that the class label is posi-
tive and learn parameters w from data. In logistic regression, this relation-
ship can be expressed as

P (Y = 1|x,w) =

1

1 + e�w

>
x

, (6.1)

which is a monotonic function of w>
x. Function �(t) =

�
1 + e�t

��1 is called
the sigmoid function or the logistic function and is plotted in Figure 6.2.

6.1.1 Predicting class labels

For a previously unseen data point x and a set of coefficients w⇤ found from
Eq. (6.4) or Eq. (6.11), we simply calculate the posterior probability as

P (Y = 1|x,w⇤
) =

1

1 + e�w

⇤T ·x .

If P (Y = 1|x,w⇤
) � 0.5 we conclude that data point x should be labeled as

positive (ŷ = 1). Otherwise, if P (Y = 1|x,w⇤
) < 0.5, we label the data point
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Logistic regression versus linear 
regression

• Why might one be better than the other? They both use a 
linear approach

• Linear regression could still learn <x, w> to predict E[Y | x]

• Demo: logistic regression performs better under outliers, when 
the outlier is still on the correct side of the line 

• Conclusion: 
• logistic regression better reflects the goals of predicting p(y=1 | x), to 

finding separating hyperplane

• Linear regression assumes E[Y | x] a linear function of x!
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Whiteboard

• Logistic regression 
• maximum likelihood with weightings on samples

• optimization strategy

• issues with minimizing Euclidean distance for sigmoid

• Multinomial logistic regression

• Next class: 
• generative approach: naive Bayes
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