
Generalized linear models



Comments (Oct. 10)

• Thought questions due this Thursday

• Office hours today shifted by 1 hour (starting at 4 p.m., ending 
at 5:30 p.m.)
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Summary so far
• From chapters 1 and 2, obtained tools needed to talk about 

uncertainty/noise underlying machine learning
• capture uncertainty about data/observations using probabilities

• formalize estimation problem for distributions

• Identify variables x_1, …, x_d
• e.g. observed features, observed targets

• Pick the desired distribution
• e.g. p(x_1, …, x_d) or p(x_1 | x_2, …, x_d) (conditional distribution)

• e.g. p(x_i) is Poisson or p(y | x_1, …, x_d) is Gaussian

• Perform parameter estimation for chosen distribution
• e.g., estimate lambda for Poisson

• e.g. estimate mu and sigma for Gaussian3



Summary so far (2)

• For prediction problems, which is much of machine learning, 
first discuss 
• the types of data we get (i.e., features and types of targets)

• goal to minimize expected cost of incorrect predictions

• Starting from this general problem specification, it is useful to 
use our parameter estimation techniques to solve this problem
• e.g., specify Y = Xw + noise, estimate mu = xw

• Underlying assumptions
• iid data, so log of likelihood splits up into sum

• noise is independent of features
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Summary so far (3)

• For linear regression setting, modeling p(y|x) as a Gaussian 
with mu = <x,w> and a constant sigma

• Performed maximum likelihood to get weights w 

• Possible question: why all this machinery to get to linear 
regression?
• one answer: makes our assumptions about uncertainty more clear

• another answer: it will make it easier to generalize p(y | x) to other 
distributions (which we will do with GLMs)
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Exercise: MAP for Poisson

• Recall we estimated lambda for Poisson p(x)
• Had a dataset of scalars {x1, …, xn}

• For MLE, found the closed form solution lambda = average of xi

• Can we use gradient descent for this optimization?
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Exercise: Linear regression
• Recall we estimated w for p(y | x) as a Gaussian

• We discussed the closed form solution 

• and using batch or stochastic gradient descent 

• Now imagine you have 10 new data points. How do we get a 
new w, that incorporates these data points?
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w = (X>X)�1X>y

wt+1 = wt � ⌘X>(Xwt � y)

wt+1 = wt � ⌘tx
>
t (xtwt � yt)



Exercise: Predicting the 
number of accidents 

• In Assignment 1, learned p(y) as Poisson, where Y is the 
number of accidents in a factory

• How would the question from assignment 1 change if we also 
wanted to condition on features?
• For example, want to model the number of accidents in the factory, 

given x1 = size of the factory and x2 = number of employees

• What is p(y | x)? What are the parameters?
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Whiteboard

• Generalized linear models
• Poisson regression

• Logistic regression (intro)

• General exponential family models
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Exercise
• Why is ML and MAP estimation seemingly more complicated for 

regression setting than parameter estimation in third chapter?
• e.g., previously estimated parameter lambda for Poisson p(x | lambda)

• For estimating p(y | x) as a Poisson distribution, we did not have 
a closed for solution for w, but we did for lambda when 
estimating Poisson p(x)

• Reason: conditional distribution lambda = exp<x , w>, rather 
than just directly estimating one lambda for p(x) 
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