Homework Assignment # 3
Due: Friday, November 22, 2019, 11:59 p.m.
Total marks: 100

Question 1. [60 MARKS]

In this question, you will implement several binary classifiers: naive Bayes, logistic regression
and a neural network. An initial script in python has been given to you, called script_classify.py,
and associated python files. You will be running on a physics dataset, with 8 features and
100,000 samples (called susysubset). The features are augmented to have a column of ones,
in dataloader.py (not in the data file itself). Baseline algorithms, including random predictions
and linear regression, are used to serve as sanity checks. We should be able to outperform random
predictions for this binary classification dataset.

(a) [15 MARKS] Implement naive Bayes, assuming a Gaussian distribution on each of the features.

Try including the columns of ones and not including the column of ones in the predictor. What
happens? Explain why.

(b) [15 MARKS] Implement logistic regression.
(c) [20 MARKS] Implement a neural network with a single hidden layer, with the sigmoid transfer.

(d) [10 MARKs] Implement k-fold internal cross-validation for picking the best meta-parameters

for logistic regression and the neural network. A simple, generic cross-validation interface has been
provided in script_classify.py. For this assignment, use k = 5 folds. Choose at least one meta-
parameter and at least three values of that meta-parameter to test for each algorithm. Report the
average and standard error for the meta-parameters chosen by cross-validation on the test set.

Question 2. [40 MARKS]

In this question, you will implement kernel logistic regression. Kernel logistic regression can be
derived using the kernel trick, where the optimal solution w is always a function of the training data
w = XTa for X € R"*? and a € R". Therefore, we could instead learn e, and whenever we predict
on a new value x, the prediction is x'w = x' XTa = 31" | k(x,x;)oy with k(x,x;) = (x,%;) in
this case. In general, we can extend to other feature representations on x, giving ¢(x) and so a
different kernel k(x,x;) = (x,X;).

The kernel trick is useful conceptually, and for algorithm derivation. In practice, when im-
plementing kernel regression, we do not need to consider the kernel trick. Rather, the procedure
is simple, involving replacing your current features with the kernel features and performing stan-
dard regression or classification. For learning, we replace the training data with the new kernel

representation:

k(x1,c1) k(xi,c2) ... k(x1,ck)
Krain = : : : : e R™¥
k(xp,c1) k(xp,c2) ... k(Xn,c)
for some chosen centers (above those chosen centers were the training data samples x;). For
example, for the linear kernel above with k(x,x;) = (x,x;), the center is ¢ = x;. Notice that the

number of features is now k, the number of selected centers, as opposed to the original dimension
d. Once your’ve transformed your data to this new representation, then you learn w with logistic

1/2



Fall 2019 CMPUT 466/566: Machine Learning

regression as usual, such that Ki.jnW approximates yirain. As before, you can consider adding
regularization. The prediction is similarly simple, where each new point is transformed into a
kernel representation using the selected centers.

(a) [25 MARKS] Implement kernel logistic regression with a linear kernel and run it on susysubset.
Compare the performance in one sentence to the performance of the algorithms from the first
question.

(b) [15 MARKS] Using the same implementation, change the linear kernel to a Hamming distance

kernel and run the algorithm on the dataset Census. In one or two sentences, summarize your
performance, compared to the random predictor.

Bonus (mandatory for 566). [20 mARKs]

(a) [10 MARKS] In the first part of this assignment, you implemented a neural network with one

hidden layer. Implement a second neural network with two hidden layers. Additionally, use your
implementation of RMSProp from the previous assignment to train this two hidden layer neural
network.

(b) [10 MARKS] In the first part of the assignment, you implement k-fold internal cross-validation.

When partitioning the dataset into k validation sets, it is important to balance the ratio of samples
belonging to class A versus samples belonging to class B for each validation set.

Implement stratified sampling k-fold cross-validation so each validation set has the same class
ratio as the training set. Test each of the algorithms in the first part of the assignment again, and
report the differences in your findings.

2/2



